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1 Introduction 
Navigation is one of the oldest arts known to man and 
comprises of reaching a destination starting from a sour-
ce by taking the shortest possible route. In very rare ca-
ses is this shortest route a straight line, obstacles have to 
be overcome so that in general, the route represents 
straight pieces placed one after the other. The job of the 
navigator hence, is to keep the deviation from the 
planned course as low as possible and that too, during 
both the day and night. For this purpose, he must have an 
instrument that shows him the direction of the planned 
course and he must know the distance that has already 
been covered. The oldest instrument providing informa-
tion about the direction is the magnetic compass, which 
was already being used by the Chinese in 200 – 300 BC. 
The compass came to the west only in the 14th century 
AD. The Chinese already knew about the wrong indica-
tions of the compass and one tried to discover instru-
ments that are more suitable. In 1878, Foucault could 
demonstrate with the help of a gyroscope, that a hanging 
rotating mass tries to retain its impulse axis in space. The 
wars around 1910 led to the development of a gyrocom-
pass, the kind of which is being used nowadays in sea 
navigation. In 1913, Sagnac developed an apparatus that 
could determine the changes in the angular speed 
through optical interference. However, no one at that 
time gave a serious thought to use this as a substitute for 
the gyrocompass. This situation changed after the dis-
covery of the Laser in 1960. The advantage of a laser gy-
roscope is undoubtedly the fact that such systems do not 
contain any rotating mass, and hence are insensitive to 
linear accelerations as compared to the mechanical gyro-
scopes. Especially noteworthy is also the higher meas-
urement range of 0.01 °/h to 1000 °/s, so that these sys-
tems can also be used in fast flying objects. Today, Laser 
gyroscopes are being used in commercial aircrafts like 
the Airbus or in carrier rockets like the Ariane. 
The aim of this project is the introduction and the testing 
of a Helium Neon ring laser gyroscope. Certain funda-
mental concepts have been explained below to ensure a 
better understanding of such a system. 

2 Fundamentals 

2.1 Characteristics of light 
Light, the giver of life, has always held a great fascina-
tion for human beings. It is therefore no coincidence that 
people have been trying to find out what light actually is. 
We can see it, feel its warmth on our skin, but we cannot 
touch it. The ancient Greek philosophers thought light 
was an extremely fine kind of dust, originating in a 
source and covering the bodies it reached. They were 
convinced that light was made up of particles. As hu-
mankind progressed and we began to understand waves 
and radiation, it was proved that light did not, in fact, 
consist of particles but that it is an electromagnetic radia-
tion with the same characteristics as radio waves. The 
only difference is in the wavelength. We now know that 
the characteristics of light are revealed to the observer 
depending on how he sets up his experiment. If the ex-

perimenter sets up a demonstration apparatus for parti-
cles, he will be able to determine the characteristics of 
light particles. If the apparatus is one used to show the 
characteristics of wavelengths, he will see light as a 
wave. The question we would like to be answered is: 
What is light in actual fact? The duality of light could 
only be understood using modern quantum mechanics. 
Heisenberg showed, with his famous “uncertainty rela-
tion”, that strictly speaking, it is not possible to deter-
mine the place x and the impulse p of any given occur-
rence at the same time  

x
1x p
2

∆ ⋅∆ ≥  

If, for example, the experimenter chooses a set up to 
examine particle characteristics, he will have chosen a 
very small uncertainty of the impulse px. The uncertainty 
x will therefore have to be very large and no information 
will be given on the course of the occurrence. Uncertain-
ties are not given by the measuring apparatus, but are of 
a basic nature. This means that light always has the par-
ticular quality the experimenter wants to measure. We 
can find out about any characteristic of light as soon as 
we think of it. Fortunately, the results are the same, 
whether we work with particles or wavelengths, thanks 
to Einstein and his famous formula: 

2E m c= ⋅ = ⋅ω  

This equation states that the product of the mass m of a 
particle with the square of its speed c corresponds to its 
energy E. 
It also corresponds to the product of Planck’s constant 
h 2= ⋅ π  and its radian frequency 2ω = π ⋅ν . In this 
case ν represents the frequency of luminous radiation. In 
our further observations of the fundamentals of the 
Michelson interferometer, we will use the wave repre-
sentation and describe light as electromagnetic radiation. 
All types of this radiation, whether in the form of radio 
waves, X-ray waves or light waves consist of a combina-

tion of an electrical field E  and a magnetic field H . 
Both fields are bound together and are indivisible. Max-
well formulated this observation in one of his four equa-
tions, which describe electromagnetic fields 

EH
t

∂∇ × ≈
∂

 

According to this equation, every temporal change in an 
electrical field is connected to a magnetic field (Fig.1). 
 

E

H
X

Z

Y

 

Fig. 1: Light as electromagnetic radiation 
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Due to the symmetry of this equation, a physical condi-
tion can be sufficiently described using either the electri-
cal or the magnetic field. A description using the electri-
cal field is preferred since the corresponding magnetic 
field can then be obtained by temporal derivation. In the 
experiments (as presented here) where light is used as 
electromagnetic radiation, it is advantageous to calculate 
only the electrical fields since the light intensity is: 

2cI E
4
⋅ ε= ⋅
π

. 

This is also the measurable size as perceived by the eye 
or by a detector. In this case, the speed of light is c in the 
respective medium and ε is the corresponding dielectri-
cally constant. Since we are comparing intensities in the 
same medium, it is sufficient to use  

2
I E=  

E

X

Z

Y

 

Fig. 2: In this experiment we need only to observe the 
electrical field strength E 

The experimental findings agree with the theory of elec-
tromagnetic radiation if a harmonic periodic function be-
comes temporally dependent on the field strength of 
light. In its simplest form, this is a sine or cosine func-
tion. An amplitude Eo and a wavelength λ should be used 
in the definition of this kind of function. Let us begin 
with the equation: 

X 0
2E E sin x⋅ π = ⋅ ⋅  λ

, (1) 

which we will elaborate and explain further. 
 

X

Z

Y
E

λ

Eo

 

Fig. 3: Amplitude and wavelength 

In the above figure, the light wave no longer oscillates in 
the Z-direction as in Fig.2 but at a certain angle to the Z- 
or Y-axis. The X-axis has been chosen as the direction of 
propagation of the wave. We still require information on 
the direction in which the electrical field strength Ex os-
cillates to complete the description of the wave. Strictly 
speaking, the field Ex oscillates vertically to the direction 
of propagation X. However, we have to give information 
regarding the Z- and Y-axis. This leads to the term ‘Po-
larisation’ and Direction of Polarisation. In Figs. 1 and 2 
we used linearly polarised light with a polarisation direc-
tion in Z and in Fig.3 we used a different direction. We 
will now introduce the polarisation vector P, which is de-
fined in the following Fig.4. We have to look into the 
light wave in the direction of the X-axis for this purpose. 
 

E 0

EY

EZ

Y

Z

α

 

Fig. 4: Definition of the polarisation vector 

We can observe a wave expanding in the X-direction and 
oscillating at the electrical field amplitude Eo below an 
angle α to the Y-axis. The amplitude Eo is separated into 
its components, which oscillate in the Z- or Y-direction. 

We now write 0E  instead of Eo to indicate that the am-

plitude Eo is now made up of individual components. 

( ) ( ) ( )2 2 22 Y Z Y Z
0 0 0 0 Y 0 Z

ˆ ˆ ˆE E E E e E e= + = ⋅ + ⋅  

In this case ( ) ( )Z Yˆ ˆe 0,1 ,e 1,0= =  is the unit vector in 

the Z- or Y-direction on the ZY-plane. Characteristically 

the unit vectors yield Zê 1=  and the scalar prod-

uct Z Yˆ ˆe e 0⋅ = . The equation (1) can now be general-

ised to: 

( ) ( )Y Z
X 0 Y 0 Z

2ˆ ˆE Y, Z E e E e sin xπ = ⋅ + ⋅ ⋅ ⋅  λ
 

At this point, we come across a fundamental principle in 
classic wave theory, i.e. the principle of superimposition. 
A big word for the simple statement: 
Every wave can be represented as the sum of individual 
waves. 
In our example we had separated the wave as shown in 
Fig.4 into two individual waves, i.e. one that oscillates in 
the Z-direction and another in the Y-direction. We could 
just as well say that our wave was formed by the super-
imposition of these two individual waves. The word in-
terference can also be used to mean superimposition. In 
this context, our wave was formed by the interference of 
two individual waves. This is the basis for the function-



EXP 16 Characteristics of light 
 

Page - 5 - 
Dr. W. Luhs   MEOS GmbH   79427 Eschbach   Januar 2000 

 

ing of the Michelson interferometer. An introduction to 
this interferometer now follows. For the time being, let 
us return to the polarisation vector. 
The polarisation vector P is also a unit vector, which al-
ways points in the direction of the oscillation of the elec-
trical field Ex 

Y Z
0 0 0

Y Z
0 00

Ê E Eˆ ˆ ˆP e eˆ E EE
= = ⋅ + ⋅ , 

or as is written for vectors  
Y Z
0 0

0 0

E E
P̂ ,

E E
 

=   
. 

The polarisation vector for a polarisation in the Z-
direction (0°) would then be, for example: 

P̂ (0,1)=  

for a polarisation direction of 45° it would be:  

( )1P̂ 1,1
2

= .  

The equation of the wave with any given polarisation di-
rection will thus be  

( )X 0
2ˆ ˆE Y, Z P E sin xπ = ⋅ ⋅ ⋅  λ

, or  

( ) ( ) ( )X Y, ZÊ Y, Z E E sin k x= ⋅ ⋅ . (2)

We have introduced the wave number k in the above 
equation 

2k π=
λ

. 

The wave number k has the length dimension-1 and was 
originally introduced by spectroscopists because it was a 
size that could be measured immediately with their 
equipment. We are using this size because it simplifies 
the written work. 
Till now we have only described the wave as a function 
of the location. This would be sufficient in order to un-
derstand the classical Michelson interferometer, but not 
for technical interferometers. We carry out the following 
hypothetical experiment to introduce the “time coordi-
nate”: 
 

Location xX0

t0

t1

 

Fig. 5: Hypothetical experiment for the introduction of 
dependency on time 

The talented physicist Walter S. * (*Names have been 
changed) is working on new experiments with electro-

magnetic waves in his laboratory. His colleague Gerd N. 
who is jealous of his rival’s success sees that the door to 
Walter S.’ laboratory has been left open a crack and uses 
the opportunity to find out what his colleague is working 
on. In spite of his nervousness, Gerd N. forces himself to 
make painstakingly accurate notes of his observations. 
He measures the time with his Swiss stop watch, a pre-
sent from his father, who was also a physicist and notes 
the respective intensities of what he sees through the 
crack in the door. He rushes into his modest study, red in 
the face, and writes his observations into his laboratory 
records. Here we find the following entries: 
“..........I stood at location X and looked through the 
crack in the door. I observed periodic oscillations in field 
strength, which fluctuated between a maximum and a 
minimum. I began measuring at the time t=0, when the 
field strength was at its minimum. At the time t1 I calcu-
lated the maximum field strength. The differences in 
time between the extreme values stayed constant.” A 
graph of his measurement values follows: 
 

 

Fig. 6: Gerd N’s measurement curve 

Gerd N. further states that:”....... the time that passed be-
tween two maxima as the duration period τ. I have ob-
served n of such maxima within one second. Obviously, 

the field strength has a frequency of 
nν =
τ

 and follows 

a periodic function ( )0E E sin 2 t= ⋅ π ⋅ ν⋅  although 

this function begins with positive values. The measured 
values only correspond to the observations if a constant 
is added to the argument of the sine  

( )( )0 0E E sin 2 t t= ⋅ π ⋅ ν⋅ − . 

Some weeks later both colleagues meet at a specialists’ 
conference. As is often the case, the evening session of 
the conference took place in a suitable atmosphere, 
where the participants committed themselves to the team 
spirit over a glass of wine and agreed on all other things 
as well. Walter S. spoke openly about how he had man-
aged to formulate the position of the course of a wave 
and wrote his formula on the beer mat, commonly used 
in this area 

( )0 0
2E E sin x xπ = ⋅ ⋅ −  λ

. 

How the evening finally ended is left to your own imagi-
nation. What is important is that both experimentalists 
measured the same field strength, one with a stopwatch 
in his hand, the other with a scale. Therefore  
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( )( ) ( )0 0
0

E 2sin 2 t t sin x x
E

π = π ⋅ ν⋅ − = ⋅ −  λ
. 

This is the same as  

( ) ( )0 0
1t t x xν⋅ − = ⋅ −
λ

 

or 

( )
( )

0

0

x x
c

t t
−

ν⋅λ = =
−

.  

 
This hypothetical experiment has shown us that we can 
describe the wave by its temporal course on the one 
hand, and by the position of the course of a wave on the 
other. We have also found out the importance of the rela-
tionship of the speed c of a wave to its frequency and 

wavelength
cν =
λ

. 

If we write the connection with ω=2πν as a rotary fre-
quency we get:  

2 c k cπω = ⋅ = ⋅
λ

. 

Let us now return to the generalised formula for the 
temporal and spatial course of the field strength of a light 
wave. Since the sine is a periodic function, we can in-
clude the temporal and spatial dependency into the ar-
gument. We would then get  
 

( ) ( ) ( ) ( )( )X Y, Z 0 0Ê Y, Z E E sin k x x t t= ⋅ ⋅ − +ω ⋅ −
 
If we now make the constants kx0  and ωt0 into one con-
stant δ we obtain the general formula  
 

( ) ( ) ( )X Y, ZÊ Y, Z E E sin k x t= ⋅ ⋅ + ω ⋅ + δ  (3) 

2.2 Superimposition and Phase δ   
δ is also described as a phase. Since this term is often in-
convenient, we would like to examine it more closely. If 
we put x=0 and t=0 into (3) the field strength will have a 

value of ( ) ( ) ( )X Y, ZÊ Y, Z E E sin= ⋅ δ  and thus de-

fines an initial value for the amplitude. This value is or 
will be determined according to the physical situation. 
 

δ

W
a

v
e

2

W
a

v
e

1

 

Fig. 7: Definition of phase δ 

Obviously, phase δ contains information about the rela-
tionship between two or more waves. Let us presume 
that the waves originate in a light source and phase δ 
contains information on how the wave was formed. Light 
waves are formed by emission processes. There is an 
emission procedure for every photon or light wave. Such 
processes are always taking place when the light source 
is continuously illuminated. The emission procedures are 
distributed statistically according to the type of light 
source. Thus, phase δ is also distributed statistically. If 
the emission procedures are coupled to each other, as is 
the case with lasers, and all photons or waves have the 
same frequency or wavelength (they are monochromatic) 
the light is then described as coherent (holding itself to-
gether). If, however, phase δ is randomly distributed, 
then this light is incoherent. This is the case with thermal 
light sources, e.g. light bulbs. To judge the coherence of 
a light source, the characteristics of the emitted waves 
and/or photons would have to be classified. The waves 
(photons) are first sorted out according to their frequen-
cies (wavelengths) and then according to their phases. If 
we form small “containers” in our minds with the labels: 

2k numerical valueπ= =
λ

and 

numerical valueδ =  
and if we now sort out the photons in these containers 
and then count the photons per container, we could ob-
tain a statement on the coherence. This kind of container 
is also called a phase cell. If all photons were in one con-
tainer or phase cell, the light would be completely coher-
ent. 
In the example according to Fig.7, the wave 2 has a 
phase of δ as opposed to the wave 1; in other words, the 
waves have a phase difference of δ, presuming that we 
have produced two such waves (this is exactly what the 
Michelson interferometer does). We expect a third wave 
through the principle of superimposition, which is 
formed by the superimposition or interference of the two 
basic waves. We will find out how this wave looks by 
simply adding both basic waves: 

Wave 1 ( ) ( ) ( )1 Y, ZÊ Y, Z E E sin k x t= ⋅ ⋅ +ω ⋅ + δ  

Wave 2 ( ) ( ) ( )2 Y, ZÊ Y, Z E E sin k x t= ⋅ ⋅ +ω ⋅  

Wave 3 ( ) ( ) ( )3 1 2
ˆ ˆ ˆE Y, Z E Y, Z E Y, Z= +  

It is now easy to imagine that a large number of waves 
with different frequencies ω or wavelengths λ and phases 
δ result in such a mixture and that it makes little sense to 
carry out superimposition or interference experiments 
with this light. Therefore light sources which emit light 
within a narrow emission spectrum with a phase as con-
stant as possible are selected. Lasers are an example of 
such light sources. However, when Michelson carried 
out his experiments around 1870 he could not use lasers. 
He used the red emission line of a cadmium lamp whose 
emission bandwidth showed a coherence length of only 
20 cm. This means that when, for example, waves at the 
position x=0 were superimposed with those at the posi-
tion x=20, there was no readable interference any more. 
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We will come back to the important term “coherence 
length” later on and discuss it in more detail. 

2.3 Interferometer 
An apparatus that produces this physical condition is 
shown in the following diagram. 
 

L1

L2

M1

M2

S

Exit 2

Exit 1

Entrance

 

Fig. 8: Michelson interferometer. 

We beam light into the entrance of the interferometer 
from some light source. The light is split into two bun-
dles on a beam-splitting plate S. One bundle hits the mir-
ror M1 and the other the mirror M2. The bundles will re-
flect back in themselves at these mirrors and reunite at 
the beam-splitting plate S. The respective bundles are 
split into two further bundles due to the characteristics of 
the beam-splitting plate and one bundle is led in the di-
rection of exit 1, the other in the direction of exit 2 in the 
process. Exit 2 of the Michelson interferometer points in 
the direction of the light source, so this exit is practically 
of no use to us to set up photodetectors or imaging 
screens. This is why only exit 1 will be mentioned. How-
ever, exit 2 must also be taken into consideration for the 
energy balance. Whatever technical model of an interfer-
ometer is chosen, it can be represented easily in an opti-
cally circuit diagram.  
 

L1

L2

Exit 1

Exit 2

Entrance
W

a v e 1

W
a v e 2  

 

Fig. 9: ”Optical circuit diagram” of an interferometer 

The light, which is put into the entrance of the interfer-
ometer, is split into two bundles. How this happens tech-
nically is not important for the time being. This kind of 
element can generally be called a directional coupler. 
Bundle 1, or, in the simplest case, the wave 1 runs 
through the path L1 and the other wave 2 runs through 
the path L2. Both waves are brought together in a mixer. 
This mixer has two exits. In the Michelson interferome-
ter, directional couplers and mixers are the same ele-

ment. We are only interested in exit 1 for the time being. 
As we will see later on, exit 2 is symmetrical to exit 1. 
We now just have to calculate wave 3 at exit 1 which is 
formed out of the superimposition of wave 1 with wave 2 
which have travelled along a path from L1 or L2. With-
out jeopardizing the general validity of the solution, we 
can assume that the electric field strength only oscillates 
in the Y-direction. As already defined in the beginning 
the waves propagate in the X-direction. Although the di-
rection of the bundle of rays can point in other directions 
after separation, they should have the same direction of 
propagation, at least in the mixer, if they are to interfere 
at all. 
 

Wave 1 ( )1 01 1E E sin k L t= ⋅ ⋅ + ω ⋅  

Wave 2 ( )2 02 2E E sin k L t= ⋅ ⋅ + ω ⋅  

Wave 3 3 1 2E E E= +  

 
Since both waves, E1 and E2 are formed when the enter-
ing wave E0 is split and the splitter should separate them 
symmetrically, both partial waves do not have any phase 
shift δ with regard to each other. 

( ) ( )3 01 1 02 2E E sin k L t E sin k L t= ⋅ ⋅ + ω ⋅ + ⋅ ⋅ + ω ⋅
 
A screen or photodetector is installed at exit 1. The hu-
man eye and the photodetector are not in a position to 
register electric field intensities, but can only register the 
light intensity I which is connected to the field strength: 

2I E=  

( ) ( )( )2

01 1 02 2I E sin k L t E sin k L t= ⋅ ⋅ + ω ⋅ + ⋅ ⋅ + ω ⋅

( )
( ) ( )

( )

2 2
01 1

01 02 1 2

2 2
02 2

I E sin kL t

2E E sin kL t sin kL t

E sin kL t

= ⋅ +ω

+ +ω +ω

+ ⋅ +ω

 

 
To simplify the mixed term we use the relation:  
 

( ) ( )2 sin sin cos cos⋅ α ⋅ β = α −β + α +β  

 
and obtain: 
 

( )
( )( )
( )( )

( )

2 2
01 1

01 02 1 2

01 02 1 2

2 2
02 2

I E sin kL t

E E cos k L L

E E cos k L L 2 t

E sin kL t

= ⋅ +ω

+ −

+ + + ω

+ ⋅ +ω

 

 
The expression for light intensity, which is perceived ei-
ther by a detector or by our own eyes, consists of four 
terms. Only the second term is not dependent on the time 
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t. All other terms oscillate with the frequency ω. We use 
c2 2ω = πν = π
λ

 

to determine this ω. The frequency of light is ν and has a 
wavelength λ and a speed c. In the later experiments, we 
will select the light emitted by a Helium-Neon laser. The 
wavelength of this light is 633mm. Using this value and 
the speed of light c = 3⋅108 m/s the frequency ν is calcu-
lated as:  

8
14

9

3 10 4,7 10 Hz
633 10−

⋅ν = = ⋅
⋅

. 

The sine of the first and last term oscillates at this fre-
quency and the third even oscillates at double this fre-
quency. Neither the eye nor any photodetector is capable 
of following this extremely high frequency. The fastest 
photodetectors nowadays can follow frequencies of up to 
approx. 2⋅109 Hz. This is why a detector, and even more 
so, our eyes can only perceive average values. The sin2 
terms oscillate between 0 and 1; their temporal average 
value is therefore1/2. The cosine term oscillates between 
-1 and +1 and the average value is zero. The intensity I 
would therefore be:  
 

( )2 2
01 02 01 02

1 1I E E E E cos k L
2 2

= + + ⋅∆  

1 2L L L∆ = − . 

 
Obviously, I is maximum if the cosine is one. This is al-
ways the case when its argument is zero or an integral 
multiple of 2π. I is minimum just at the time when the 
cosine is –1 
 

( )22 2
max 01 02 01 02 01 02

1 1 1I E E E E E E
2 2 2

= + + = +  

( )22 2
min 01 02 01 02 01 02

1 1 1I E E E E E E
2 2 2

= + − = −  

 
Let us remind ourselves that  

2k π=
λ

 

and that it is constant at a stable wavelength. The light 
intensity at exit 1 is therefore obviously only dependent 
on the path difference L1-L2. If both paths having the 
same length, both partial waves interfere constructively 
and the light intensity observed is maximum. If the path 
difference is just λ /2 then: 

2k L
2

π λ⋅∆ = ⋅ = π
λ

. 

The cosine is then -1 and the light intensity I at the exit 
becomes minimum. Let us divide the initial intensity into 
two partial ones of equal size, i.e. E01 and E02. In this 
case, even the light intensity is zero. Here, both partial 
waves interfere destructively. Keeping in mind that the 
wavelength for our experiment is 633 nm and that it 
leads to a shift from one wave to another by only 

λ/2=316.5 nm = 0.000000316 mm (!) from a light to a 
dark transition at exit 1, this type of interferometer is a 
highly precise apparatus for measuring length. 
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Fig. 10:Interferogram 

 
With the knowledge of the preceding chapters, we are 
now prepared to approach the main topic of this project, 
the laser gyroscope. 

2.4 Sagnac Effect 
Whereas the Michelson interferometer is mostly suitable 
for measuring translations, there are also certain special 
arrangements, with the help of which one can measure 
rotations with a very high degree of accuracy. The start-
ing point of the research, however, was not based on 
technical applications, but instead served to test the the-
ory of relativity of Einstein from 1910 – 1920. During 
that time, the relativity principle of electrodynamics re-
ferred exclusively to translation movements. However, it 
was already known from Mechanics, that natural proc-
esses behave differently in a rotating system than in a 
non-rotating system. This is shown, for example, by the 
pendulum experiment of Foucault, which has proven the 
rotation of Earth. The equations of motion of rotating 
mechanical systems were changed as a result to the ex-
tent that apparent forces like the centrifugal and the 
Coriolis force were integrated. Harress (1912) and then 
Sagnac (1913) studied the question of how electromag-
netic radiation like light would behave in a rotating sys-
tem. We shall discuss here first the results of Sagnac, 
since the laser gyroscope was based on them. 
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Fig. 11: Sagnac Interferometer 

In this experiment the light from the source L is split by 
the beam splitter BS in such a way, that one half of the 
intensity goes in the clockwise direction and the other in 
the counter-clockwise direction, reflected by the mirrors 
M1 to M3, and then again leave the beam splitter to-
gether. The interference pattern is recorded on the screen 
S. The complete arrangement including the light source, 
mirrors, screen and the observer are placed on a rotatable 
platform, whose centre of rotation is in the centre of the 
interferometer. At rest, an interference pattern is ob-
served on the screen, which however, changes when the 
whole arrangement starts rotating. Apparently, the rota-
tion causes a phase difference to occur between the two 
waves. We shall now calculate this phase difference. 
For this we assume that the platform is rotating in coun-
ter-clockwise direction with an angular speed of ω. The 
task is first to determine the velocity v for all the 
elements ds of the path of the light rays and then to de-
termine their run-time difference ∆T. 
 

( ) ( )
ds dsT T T

v ds v ds− +
− +

∆ = − = −∫ ∫  (4) 

 
The number N of the continuous bright- dark-transitions 
is calculated in the same way as in Michelson interfer-
ometer: 

cN T T= ∆ ⋅ν = ∆ ⋅
λ

 (5) 

Whereby c is the speed, ν the frequency and λ the wave-
length of the light rays used. We shall now go on to de-
termine equation (4).  
 

x

y

r(φ)

φ

P1

c

υ
r.ω r.ω.cos(υ)

 

Fig. 12: Speed components analysis 

We shall first consider the speed of the wave, which 
spreads out from the point P1 in the direction of rotation 
v+. The linear velocity v here, at a distance r from the 
centre of rotation, is: 
 

v r= ⋅ω  
 
However, for the linear element ds in the direction of the 
wave, it is: 
 

v r cos= ⋅ω ⋅ υ  
 
This gives the total speed of the wave for the linear sec-
tion ds as: 
 

v c r cos+ = + ⋅ω ⋅ υ  
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Fig. 13: Determining cos (υ) 

From figure 13, we can see the following context: 
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r dcos
ds
⋅ φυ = . 

The equation (4) thus becomes: 
 

2 2

ds dsT d dc r c r
ds ds

∆ = −φ φ− ⋅ω + ⋅ω
∫ ∫  

 
Or 
 

( )
2

22 d2
c ds

2 r dT
c 1 r φω

ω φ∆ =
− ⋅ ⋅

∫  

 

since c
c
ω <<  the above equation gets simplified to: 

 

2
2 2

2 4FT r d
c c
ω∆ = φ = ⋅ω∫ , 

 
whereby F denotes the encompassed area. From equation 
(5) we get the following for the number of bright- dark 
transitions (fringes): 
 

4FN
c

= ⋅ω
λ

 (6) 

 
The number of fringes is thus proportional to the angular 
speed ω and the area F, which is surrounded by the path 
of the light rays. This displacement of the interference 
pattern by N fringes is also actually observed. In one of 
his experiments, Sagnac used a fast rotating disc with a 
diameter of 1 m. In other experiments he used a much 
bigger light path on board a ship, whereby the angular 
speed was achieved by driving around narrow curves. 
Similarly, Michelson and Gale (1925) had used the rota-
tion of Earth itself to verify the effect. Here he is sup-
posed to have used a light path of many kilometres and 
still been able to prove the relatively small value of ω of 
the rotation of Earth. These can be considered as some 
excellent achievements of engineering if one considers 
the conditions at that time, when such a coherent source 
of light as a laser was still not available. Even Einstein 
was awed by the achievement of Michelson and Gale, 
who with the help of his ingenious construction, were 
able to prove the rotation of Earth and did not become a 
victim of mirror adjustments or other dirt effects. About 
70 years after the works of Michelson, scientists at the 
University of Canterbury again constructed an interfer-
ometer, to measure the rotation of Earth. The so-called 
CII Interferometer, which is now equipped with a laser 
and has been made out of a Zerodur block to ensure a 
long-term stability. This has been placed in a bunker in 
the Cashmere Cavern (New Zealand). Together with ma-
ny institutions, the questions about the constancy of the 
rotation of earth and the theory of relativity are being 
worked out here. In the next section we shall learn about 

the structure of the interferometers being used nowadays 
that use the Sagnac effect for measuring rotations. 

2.5 Ring Resonator 
The interferometers used by Sagnac were characterized 
by the fact, that the light source was present outside the 
resonator. In the laser gyroscopes of today, there is an ar-
rangement, in which the light source is present within the 
interferometer. The mirrors of the interferometer also 
function at the same time as resonator mirrors of a laser. 
In more exact words, the arrangement can be described 
as a ring laser. The arrangements, as given in fig. 14, are 
very familiar. 
 

M2M1 L  

Fig. 14: Two-mirror laser 

However, the structure can be expanded by two more 
mirrors to get a ring laser, in which no standing waves 
are generated as in the two-mirror resonator, but instead, 
gyrating waves. 
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Fig. 15: Ring Laser 

Here, one wave runs in the clockwise direction (cw, 
clock-wise) and the other in the counter clockwise direc-
tion (ccw, counter clock-wise). The mirror M2 is placed 
in such a way, that it permits a part of the laser beam to 
pass through, or in Laser Physics jargon, “decoupled”, 
namely ccw and cw. When both the beams are combined 
together again with other optical components, they pro-
duce an interference pattern on a screen. If the ring laser 
is now put in rotation, the pattern changes, corresponding 
to equation (6). Contrary to the passive optical gyro-
scopes used by Sagnac, the ring laser represents an active 
system, for whose dimensioning the optical properties of 
the mirror arrangement as well as the dynamic properties 
of the active laser material must be considered. In the 
next section, hence, we shall deal with the calculation 
and the design of the optical resonators. 
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2.6 ABCD Matrices 
In the following section, certain basic concepts about the 
calculation and the description of the optical resonator 
will be explained. For the resonator type used in the later 
experiments, the optical stability criteria and the beam 
radius course has been calculated and discussed. The 
calculations have been done for an “empty” resonator, 
since the resonator properties can be especially influ-
enced depending upon the active laser material (e.g. 
thermal lenses, abnormal refractive index etc.). In this 
context, the ABCD law will be introduced and used. This 
type of optical computation is an elegant method for ray 
tracing in a complex optical system. As shown in the 
next figure (figure 16), an equivalent lens system can be 
constructed for each optical resonator. 
 

L = R

L= 2 f

f f

RR

 

Fig. 16: Spherical resonator with equivalent lens 
guide 

It must be noted here, that the number of gyrations 
would be endless in a resonator or else one can imagine a 
system with a number of lenses as shown in figure 16. 
One gets an optically stable resonator only when such 
optical imaging properties are selected, that after endless 
passes the ray diameter remains smaller than the mirror 
diameter. With the help of ABCD or the matrices on one 
hand the ray path of the resonator can be traced mathe-
matically in its equivalent lens guide, and on the other a 
criteria can be specified for the distances L of the mirrors 
used, at which an optical resonator would be “stable”. 
 
How does the ABCD law work? 
 
First, we must assume that the following calculations for 
the limiting case of geometrical optics are correct. This 
in addition, when the angle of the rays to the optical axis 
is < 150, i.e. sinα ≈ α  at a good approximation. This 
condition is fulfilled for most of the systems, especially 
for the laser resonator. A light ray is then uniquely de-
fined through its height x to the optical axis and the in-
clination at this point (Figure 17). 
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Fig. 17: Characteristic quantities for 
A.) Light ray  
B.) Thin lens 

A matrix is introduced, which when applied to the initial 
quantities X1 and α1 gives the final quantities X2 and α2: 
 

2 1

2 1

X XA B
C D

    
= ⋅    α α    

 

 
The matrix thus introduced is called ray transfer matrix 
or the ABCD-matrix. From the example given in figure 
17A of the free propagation of a ray we can see, that α1 
= α2 and X1 = X2 Y α. The ABCD-matrix for this case 
will then be: 
 

Free ray propagation 1

1 Y
A

0 1
 

=   
 

 
For the example B of a thin lens, one gets the corre-
sponding matrix from the following: 
1. Just before (1) and after (2) the lens is X1 = X2 

2. The slope of the ray in area (2) is 2
2

X
b

α =  

3. With the image equation 
1 1 1
f a b
= −  and 1

1

Xa =
α

 

One thus gets the ABCD-matrix 
for a thin lens: 2 1

f

1 0
A

1
 

=  − 
 

 
With this method one can imagine a whole series of 
ABCD-matrices for different optical elements. However, 
the above examples suffice fully for the calculation of a 
resonator. 
One can now see, that the combination of example A and 
B, free ray propagation with subsequent passage through 
a thin lens occurs as a result of arranging systems A and 
B one after the other. 
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Fig. 18: Passage through a thin lens 

At point 1 the ray has the coordinate X1 and the slope α1 
and in the distance Y from the lens of the focus f (point 
2) the desired values are X2 and α2. 
 
By applying the ABCD-matrix for the free ray propaga-
tion (A1) and of the thin lens (A2) on the initial coordi-
nates, we get: 
 
 

2 1
2 1

2 1

X X
A A

   
= ⋅ ⋅   α α   

 

 

2 1
1

2 1f

1 0X X1 Y
1 0 1

     
= ⋅ ⋅     −α α     

 

 

2 1
y1

2 1f f

1 YX X
1

    
= ⋅    − −α α    

 

 
In the meantime, we keep the ABCD matrix A3 fixed, 
which then describes the path of the ray through a thin 
lens:  

y3 1
f f

1 Y
A

1
 

=  − − 
 

Finally, we get the following as the result: 
 

( )
1 12

y1
2 1 1f f

X YX
X 1

+α  
=   α − +α −   

 

 
With these concepts, we are now ready to calculate a 
lens guide, in order to specify the optical stability criteria 
of a laser resonator with this knowledge. As already 
mentioned, the light rays travel infinitely back and forth 
in an optical resonator. In the case of the equivalent lens 
guide this implies, that the same optical structure is trav-
ersed infinite times. After n passages, the ABCD law be-
comes the following for any specific place of the lens 
guide (figure 16): 
 

n nX A B X
C D

     
=     α α     

 (7) 

 

The ABCD matrix thereby is the equivalent lens guide 
allocated to the resonator. It would now be very cumber-
some to solve the above expression for a few thousand 
values of n. Fortunately; the nth power of a 2x2 matrix 
can be calculated much more simply: 
 

nA B A sin(n ) sin((n 1) ) Bsin(n )1

C D C sin(n ) D sin(n ) sin((nsin( )

θ − − θ θ
=

θ θ − −θ
  
    
 

Here  
A Darccos

2
+ θ =   

. (8) 

 
So that the linear system of equations remains solvable, 
i.e. the rays after infinite passages remain within the lens 
guide, equation (8) demands: 
 

A D 1
2
+ ≤  (9) 

 
This is now the stability criteria for the lens guide and 
hence also for the related resonator. Within the scope of 
this project, we shall be dealing with a special type of 
resonator, which forms the basis of the laser gyro dis-
cussed here Figure 19.  
 

L

60˚

M1

M2M3
 

Fig. 19: Ring resonator with three mirrors 

For convincing reasons, which we shall mention later on, 
a symmetric three-mirrored ring resonator is used for the 
laser gyro. The mirror M1 has a radius of curvature R, 
whereas the mirrors M2 and M3 are flat mirrors. The e-
quivalent lens guide has been shown in figure 20: 
 

f=R/2

L L
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Fig. 20: Equivalent lens guide for the ring resonator 
as shown in figure 19 

The equivalent lens guide comprises of three stages 
(from left to right): 
1) Free ray path 
2) Passage though a thin lens 
3) Free ray path 
The related matrices thus become: 
 

1
f

1 01 L 1 L
A

10 1 0 1
    

= ⋅ ⋅    −    
 

 

1 L
f f

1 L1 L
A

10 1
  

= ⋅   − −   
 

 

( )L L
f f

1 L
f f

1 L L 1
A

1
 − + −

=  − − 
 

 
With equation (9) one gets the stability criteria for this 
arrangement as: 
 

A D L 2L1 1 1
2 f R
+

= − = − ≤  (10) 

 
Apparently, the resonator is optically stable, when the di-
stance L fulfils the following condition: 
 

R L R
2
≤ ≤  (11) 

For dimensioning the resonator as laser gyro, a best pos-
sible compromise must be made considering on one hand 
the desired area A encompassed by the ray and on the 
other the active laser material. 

2.7 Helium Neon Laser 

2.7.1 He-Ne energy- level diagram 
The fascination for inert gases and their clear atomistic 
structure formed the basis for many spectroscopic 
investigations. The knowledge obtained through 
spectroscopic data was extremely helpful in deciding to 
choose helium and neon for the first lasers, using 
Schawlow Towne's discovery of lasing conditions in 1958 
to estimate whether an inversion was feasible in laser 
operation. The lifetime of the s- and p-states were well 
known. Those of the s-states were longer than those of the 
p-states by a factor of about 10. The inversion condition 
was therefore fulfilled. 
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Fig. 21: Excitation and Laser process for the visible 
Laser emission 

Fig. 21 shows the reduced energy-level diagram for 
helium and neon. Only those levels important in the 
discussion of the excitation and laser processes at a 
wavelength of 632 nm are indicated. 
The left side of the representation shows the lower levels 
of the helium atoms. Note that the energy scale is split and 
that there is a larger difference in energy in the 
recombination process than is evident in the diagram. 
Paschen's names for the neon energy levels are used 
(Racah's term descriptions are often found as well). The 
terms are simply numbered consecutively, from bottom to 
top. A characteristic of helium is that its first states to be 
excited, 21S1 and 21S0 are metastable, i.e. optical 
transitions to the ground state 11S0 are not allowed, 
because this would violate the selection rules for optical 
transitions. Because of the gas discharge, these states are 
populated by electron collisions (collision of the second 
type, Fig. 22).  
A collision is called a collision of the second type if one of 
the colliding bodies transfers energy to the other so that a 
transition from the previous energy state to the next higher 
or lower takes place. Apart from the electron collision of 
the second type there is also the atomic collision of the 
second type. In the latter, an excited helium atom reaches 
the initial state because its energy has been used in the 
excitation of a Ne atom. Both these processes form the 
basis for the production of a population inversion in the 
Ne system. 
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Fig. 22: Electron collision of the second kind 

If we look at Fig. 21 we can see that the 21S0 is slightly 
below the 3s level of the neon. However, the additional 
thermal energy kT is sufficient to overcome this gap. 
As already mentioned, the lifetime of the s-states of the 
neon are approximately 10 times longer as those of the p-
states. An immediate population inversion between the 
3s and the 2p levels will therefore be generated. The 2s 
level is emptied due to spontaneous emission into the 1s 
level. After this the neon atoms reaching their ground 
state again, primarily through collisions with the tube 
wall (capillary), since an optical transition is not allowed. 
This calming down process is the bottleneck in the laser 
cycle. It is therefore advisable to choose a capillary di-
ameter that is as small as possible. However, the laser 
will then suffer more losses. Modern He-Ne lasers work 
at an optimum of these contradictory conditions. This is 
the main reason for the comparatively low output of He-
Ne lasers. 
 
We have discussed the laser cycle of the commonly 
known red line at 632 nm up to this point. However, the 
neon has several other transitions, used to produce about 
200 laser lines in the laboratories. However, these lines 
do not play an important role for the technical interfer-
ometry 
 

CapillaryCathode Quartz glass MetalMirror

He Ne Gas Reservoir  

Fig. 23: Modern He Ne Laser with metal to glass sol-
dering of the anode and cathode as well as the laser 
mirrors 

Fig. 23 shows a modern laser tube made with highly 
perfected manufacturing techniques and optimised to suit 
the physical aspects of the laser. This applies to the 
resonator in particular, which is designed for a best 
possible output in the fundamental mode with a purely 
Gaussian beam and spectral purity in single mode 
operation (e.g. for interferometric length measurement or 

laser gyroscopes). The fulfilment of this demand depends, 
amongst other aspects, on the optimal adaptation of the 
resonator to the amplification profile of the Neon. The 
behaviour of Neon during amplification will therefore be 
discussed first. 

2.7.2 Gain Profile of Neon 
The Neon atoms move more or less freely in the laser tube 
but at different speeds. The number N of neon atoms with 
the mass m, within a speed interval of v to v+dv is 
described according to the Maxwell-Boltzmann 
distribution (Fig. 5). 

2mv2
k T

23

n(v) 4 v e dv
N (2kT / m)

−
⋅= ⋅ ⋅

π
 

T is the absolute temperature and k Boltzman´s constant 
and the above equation is applicable for all directions in 
space. However, we are only interested in the distribution 
of speed in the direction of the capillary. Using v2 = vx

2 + 
vy

2 + vz
2 we obtain for the direction x: 

2m v
x k T

x
n(v ) 2kT / m e dv

N

⋅−
⋅= ⋅  (12) 

A resting observer will now see the absorption or emission 
frequency shifted, due to Doppler's effect (Ch.Doppler: 
Abh. d. K. Boehmischen Ges.d.Wiss. (5). Vol.II (1842) 
P.465), and the value of the shift will be: 

0vv
1 v / c

=
±

Assuming v << c (13) 

ν0 is the absorption or emission frequency of the resting 
neon atom and c the speed of light. If the Doppler 
equation (12) is used to substitute the velocity v in the 
Maxwell-Boltzmann´s velocity distribution (13) the line 
broadening produced by the movement of Neon atoms can 
be found. Since the intensity is proportional to the number 
of absorbing or emitting Neon atoms, the intensity 
distribution will be: 

2
0

0 w

v v
c

v v
0I(v) I(v ) e

 −
− ⋅ ⋅ = ⋅  

(14) 

vw is the most likely speed according to: =w
2kTv
m
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Fig. 24: Probability Distribution for the velocity v of 
the neon atoms at an interval v to v + dv. 

The full width at half maximum is calculated by setting 
I(ν)=1/2 I(ν0) and the result is: 

w
Doppler 0

vv 4 ln 2 v
c

∆ = ⋅ ⋅ ⋅  Eq. 2.1 

We can conclude from Eq. 2.4 that the line broadening 
caused by Doppler's effect is larger in the case of: 
 Higher resonance frequencies ν0 
 Or smaller wavelengths (ν0=c/λ0, UV-lines) 
 Higher most likely velocity vw  
 That means higher temperature T 
and smaller in the case of: 

 A larger particle mass. 

The line profile also corresponds to a Gaussian 
distribution curve (14). Fig. 26 shows this kind of profile. 
The histogram only approaches the distribution curve 
when the speed intervals dv are small. 
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Fig. 25: Inhomogeneous line profile, speed intervals dv 

On closer observation, we can see that a line broadened 
by the Doppler effect actually does not have a pure 
Gaussian distribution curve. To understand this, we pick 
out an ensemble of Ne atoms whose speed components 
have the value v in the direction we are looking at. We ex-
pect that all these atoms emit light with the same fre-
quency ν 

( )v
o c1ν = ν ±  

However, we have to consider an additional effect, which 
is responsible for the lifetime of a transition. 
 

s
ik

1
A

τ =  

The exact profile formation can be determined from the 
convolution of the Gaussian profile with the individual 
Lorentz profiles. The result obtained in this manner is cal-
led as the Voigt profile. 
 

re
l.

In
te

ns
ity

v = 0
0.0

0.5

1.0

 

Fig. 26: Natural broadened line profiles (homogene-
ous) for groups of speed v within the inhomo-
geneous Doppler broadened gain profile 

Equivalent to the cavity resonator the Laser resonator 
shows oscillation modes, which have to fulfil the condi-
tion:  

L n
2
λ= ⋅  (15) 

or 

cL n
2

= ⋅
ν

, 
 

L represents the length of the resonator, λ the wavelength; 
c the speed of light, ν the frequency of the generated light 
and n is an integer number. Thus, every mode has its 
frequency of 

cv(n) n
2L

= ⋅  

e.g. A He-Ne-Laser with a resonator length of 30 cm at an 
emission wavelength λ of 632.8 nm will have the 
following value for n: 

8

v L 0,3n 2 L 2 2 949.167
c 632,8 10−= ⋅ ⋅ = ⋅ = ⋅ =

λ ⋅
 

The difference in frequency of two neighboured modes is: 
c c cv v(n 1) v(n) (n 1) n

2L 2L 2L
∆ = + − = + ⋅ − ⋅ =  

or 
c

2d
∆ν =  (16) 

 
In the above example the distance between modes would 
be 

8
83 10v 5 10 Hz=500 MHz

2 0,3
⋅∆ = = ⋅
⋅
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Fig. 27: Standing longitudinal waves in an optical 
resonator. A with n nodes and B with n+3 
nodes 

If the active laser material is now brought into the resona-
tor standing waves will be formed due to the continuous 
emission of the active material in the resonator and energy 
will be extracted from the material. However, the resona-
tor can only extract energy for which it is resonant. In con-
tradiction to the empty resonator where L is the mechani-
cal length for the “filled” resonator the index of refrac-
tion of the filling has to be taken into account as: 

ior AM eL n L L= ⋅ +  (17) 

Whereby Le represents the length of the empty resonator 
and LAM the length of the filled zone having the index of 
refraction nior. In principle, a resonator has an indefinite 
number of modes, whereas the active material only emits 
in an area of frequency determined by the emission line 
width. Fig. 28 shows the situation in the case of material 
that is inhomogeneously broadened. 
 

∆ν

Resonator Modes

Inhomogeneous Gain Profile

n n+1 n+2 n+3 n+4 n+5n-1n-2n-3n-4n-5n-6 n+6

 

Fig. 28: Inhomogeneous emission profile in interact-
ing with an optical Resonator 

If the laser is operating in a stationary state, we can see 
that it is emitting several longitudinal modes. These are 
exactly the same modes that will be found in the emission 
profile. Since the modes are fed by an inhomogeneous e-
mission profile, they can also exist independently. Now 
one could assume that it will be very difficult to keep the 
length of the resonator exactly matching the resonance 
condition of (15) and (17). Therefore, it should be noted 
that near the resonance of a transition the index of refrac-
tion strongly depends on the detuning from resonance 
and thus allowing a mode to oscillate on another fre-

quency as it would in an empty resonator. This effect is 
also termed as „frequency pulling and pushing“.  

2.8 Modes of the ring resonator 
In the case of a resonator with two mirrors, as for exam-
ple in figure 29, a standing wave arises because of the 
fact that the waves travelling forward (f) and backward 
(b) overlap each other. When we apply this picture to a 
ring resonator, the wave travelling forward (f) becomes 
the one passing through the resonator in the clockwise 
direction (cw, “clock-wise”), and the wave travelling 
backward becomes the one going in the counter clock-
wise direction (ccw, “counter clock-wise”). 
 

f

b

ccw

cw

A

B

 

Fig. 29: Linear (A) and Ring resonator (B) 

For the ring laser it is essential, that a multiple of the 
complete wavelength must “fit” in the resonator. If this is 
not the case, the gyrating wave will interfere with itself 
destructively and the desired laser oscillation will not be 
generated. The following applies to the ring laser as an 
amendment to equation (16) that defines the frequency 
difference of two longitudinal modes of the standing wa-
ve resonator: 

c
L

∆ν =  

Note that L here stands for the complete resonator 
length. 
As is already known for the standing wave resonator, in 
which the waves travelling forward and backward are fed 
from different speed classes, this is also the case for the 
ring laser for the cw and the ccw mode (figure 30): 
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Fig. 30: Both the modes of the ring resonator are fed 
from different classes of velocity  

In the example shown in figure 29 one can expect, that 
the ring laser has two modes (cw and ccw), but only one 
mode per direction. However, more than one mode is 
also possible per direction depending upon the level of 
the threshold. On one hand, this depends on the length of 
the resonator used or the specified free spectral range 
and the amplification (threshold). Now since the amplifi-
cation again depends on the length of the HeNe dis-
charge tube used, one selects a suitable length for the la-
ser gyro, in order to get longitudinal one-mode oscilla-
tions per direction. Laser gyros of today are constructed 
in such a way, that the resonator and the discharge path 
form a compact block. Hence, as a “black box”, they are 
not very suitable for didactic purposes. However, an 
open system will be used within this project containing a 
laser tube sealed with a Brewster window. In the models 
available, the active length is such that the ring laser 
shows longitudinal multi-mode oscillations. A selective 
element is used for getting the necessary one-mode oscil-
lations. This selective element brings the ring laser in the 
required operational state. 

2.9 Mode selection 
With a so-called Etalon, it is possible to cause frequency-
selective losses in the resonator, so that the undesired 
modes can be damped and suppressed. An Etalon is a pa-
rallel resonator having a lower quality. Most of the times 
the etalon comprises of a single glass body, whose plane 
surfaces are very well ground and polished parallel to 
each other. Like a normal resonator, the etalon also has 
modes. However, the modes are essentially broader, 
since the reflection of the plane surfaces is kept low (fig-
ure 31). The effective amplification results from the 
transmission curve of the etalon and the amplification of 
the laser active material. 
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Fig. 31: Mode selection mode with an Etalon 

If one tilts the etalon by an angle γ against the incident 
ray, the maximum of the transmission also changes ac-
cordingly: 
 

( ) ( )2
m

cT 1 m n sin
2d

ν = = ⋅ ⋅ − γ  

 
Here m is an integer (the order), d the thickness, n the re-
fractive index and γ the tilt angle of the etalon. As per 
figure 30, the modes of the etalon can also be shifted by 
tilting it, where the gain profile and the resonator modes 
remain fixed. In this way, it is possible to cause higher 
losses in the modes, which could oscillate because of the 
change in the threshold value, than for the modes, which 
are just below the maximum value of transmission for 
the etalon. Figure 30 shows two modes, cw and ccw. 
Both the modes have a mutual frequency difference cor-
responding to equation (16). If one tilts the etalon, one 
gets the situation as shown in figure 32. In this case, both 
the cw and ccw waves possess the same frequency, 
which is of an advantage to the laser gyro. 
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Fig. 32: Etalon tuned to resonance, the cw and the 
ccw waves have the same frequency 

Depending on how strongly the undesired modes have to 
be suppressed, and the spectral distance, which they 
have, the appropriate thickness d of the etalon must be 
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selected. In case of the HeNe ring laser of the following 
experiments, the etalon is 1 cm thick and does not have 
any additional mirror coating, but instead only 4% re-
flection due to Fresnel reflection. 
 

2.10 Transverse modes 
For the sake of simplicity, the laser and resonator proper-
ties were discussed for an example of a plane parallel 
resonator. In practice, this type of resonator is not used 
due to its disadvantageous characteristics. 
 

A

B

 

Fig. 33: A spherical resonator with oscillation in the 
fundamental TEM00q (A) and a transverse mode 
TEM01q (B) 

The hemispherical resonator has become very popular, 
since it exploits in a special manner the desired mode 
characteristics of the plane parallel resonator and the ad-
vantages of adjustment associated with the spherical 
resonator. However, a disadvantage accompanies this 
advantage. Whereas almost exclusively longitudinal 
modes excite in the plane parallel resonator, transversal 
modes can also arise in spherical resonators. This effect 
is shown in Fig. 33. When the laser operates in the 
steady state, the wave fronts at the mirrors have the same 
radius of curvature as the mirrors themselves. The situa-
tion is drawn in case A in which a radiation field has 
formed symmetrically about the optical axis. At the 
resonator output, one can see a round Gaussian shaped 
intensity distribution. However, it is also possible for a 
radiation field to be set up at an angle to the resonator’s 
optical axis. In principle a multitude of this type of radia-
tion field can develop, because in all of these cases the 
radius of curvature for the radiation field at the mirrors is 
the same as that of the mirrors. At the resonator output, 
one can now observe intensity distributions spatially 
separated and no longer symmetrical about the axis of 
radiation. Since these modes do not oscillate in the direc-
tion of the optical axis (longitudinal) but are mainly 
transversal, these modes are termed transversal modes. 
Owing to the large number of modes, a convention has 
been adopted in which the relevant modes are given a 
universal designation: 

T E M m n q 
TEM stands for Transverse Electromagnetic Modes. The 
indices m, n and q are integer numbers, which state the 
number of intensity spots minus one in the X axis (m) 

and the number in the Y axis (n), which are observed. 
The basis for this consideration is the fundamental mode 
TEM00q that produces just a round spot. In the example 
of fig. 33 (B) the designation is: 

TEM 01q 

The number q states how many nodal points the standing 
wave in the resonator has. This number does not have 
any significance for the user of the laser and is therefore 
generally omitted. 
It can easily understand that for the laser gyroscope 
measures has to be taken to avoid the occurrence of such 
modes. In the simplest case, a pinhole placed at a par-
ticular location inside the resonator (fig. 34) is used. The 
diameter of the pinhole is chosen so that the transverse 
modes are suppressed whereas the longitudinal modes 
can pass it without hindrance. 
 

 

Fig. 34: Suppression of transverse modes by means of 
a pinhole 

Since laser rays are Gaussian rays the beam diameter is 
not constant and varies from the distance to its beam 
waist. A Gaussian beam always has a waist. The beam 
radius w results out of the wave equation as follows: 

( )
2

0
R

zw z w 1
z

 
= ⋅ +   

 

w0 is the smallest beam radius at the waist and zr is the 

Rayleigh length 

2
R 0z w π=

λ
 

In Fig.: 35 the course of the beam diameter as a function 
of z is represented. The beam propagates within the di-
rection of z. At the position z = z

0
 the beam has the smal-

lest radius.  
 

z 0

z

2w0 2w

Beam diameter
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Fig. 35:Beam diameter of a Gaussian TEM00 beam 
versus the location z 

As also shown in figure 34, it is useful to keep the pin 
hole as near to the beam waist as possible, because if the 
distance is more, the transverse modes would overlap 
significantly with the fundamental mode, so that the pin 
hole would weaken the fundamental mode. Since we will 
be working with a commercial HeNe laser tube in this 
project, we get the pinhole in the form of an in-built cap-
illary. We now only have to select the geometry of the 
ring resonator in such a way, that the position of the 
beam waist is in the capillary (figure 35). If the length L 
is given, the radius of curvature must be selected accord-
ingly to fulfil this condition 
 

L

M1

M2M3

AM

 

Fig. 36: Geometric path of the ray, when the radius of 
curvature of the mirror is R=3L 

Finally, it must be checked, whether this arrangement is 
also optically stable. For this, we use the stability criteria 
as per (10): 
 

2L1 1
R

− ≤  

and find for R=3L: 

21 1
3

− ≤  

and notice that we are not at the verge of optical stability 
for this value, which is : 

1. R= 2L 
2. R= 4L 

In the given case, that one is at the border of the optical 
stability, there is a risk of thermal drift, because of which 
the resonator can change over to the unstable state and 
therefore not produce any more laser oscillations. 
 

2.11 The Laser gyro 
We now have collected the required knowledge for oper-
ating a transverse and longitudinal single-mode Helium-
Neon laser gyro. In this section we shall discuss what 
happens to the laser modes, when this ring laser is set in 
rotation. To analyse the modes, we must decouple a part 

of the radiation of the resonator. For this purpose, one of 
the mirrors is provided with a low transmission. 
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Fig. 37: Laser gyro with three mirrors, decoupling of 
the modes at the mirror M1 

There are different models for describing the effect of 
the rotation on the ring laser. We shall select a clear way 
with the help of the Doppler effect. In section 2.7.2, we 
have already learnt the fundamentals. The starting point 
of the laser oscillations is the spontaneous emission, pro-
duced by the excited neon atoms. When such an atom is 
at rest, it emits the frequency ν0. If it now starts moving 
at velocity v, this frequency changes because of the 
Doppler effect to: 
 

( )v
o c1ν = ν +  

 
If the velocity has been produced as a result of the rota-
tion, one gets the following value for v: 
 

rotv r= ⋅ω  

 
where ω is the angular speed and r is the distance of the 
atom to the centre of rotation. As a result of the rotation, 
the emissions frequency changes to: 

o
v r1
c c+

⋅ω ν = ν + +  
 

The above expression applies to atoms, whose velocity v 
is in the direction of rotation. The following expression 
applies to atoms, whose velocity is against the direction 
of rotation: 

o
v r1
c c−

⋅ω ν = ν − −  
 

The difference ∆ν  of both the frequencies thus be-
comes: 

0
v 2 r
c c+ −

⋅ ⋅ω ∆ν = ν − ν = ν +  
 

The portion caused only by rotation has the value: 
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rot 0
2 r 4 F

c L
⋅ ⋅ω ⋅∆ν = ν = ⋅ω

⋅λ
 (18) 

Here, we substitute: 
 

2F r  und L 2 r= π⋅ = ⋅ π ⋅  
 
and get the same expression as for the Sagnac effect with 
passive resonator. 

2.11.1 Lock-in Effect 
However, there is one restriction for equation (18) for the 
actual operation of a ring laser. Below a certain rate of 
rotation, no differential frequency occurs i.e. both the 
modes do not change their frequencies. Such behaviour 
can only be explained by a coupling of both the modes. 
This coupling occurs because parts of the intensity of 
one mode go into the other. This happens through scat-
tered light that arises at the surfaces of the resonator mir-
ror. Even today, it is not possible to produce laser mir-
rors that do not show any scattering. In practice, this 
leads to an effect, which poses a certain restriction to the 
working of the laser gyro. The scattered light, appearing 
unavoidably at the mirrors, leads to an “impurity” of the 
cw mode with few parts of the ccw mode and vice versa. 
Hence, both the modes couple, since they are affected by 
the scattered light from the other mode. This coupling 
can be broken, when the rate of rotation of the gyro ex-
ceeds a certain limit. In that case, the resonance fre-
quency of the system for both the modes is separated to 
such an extent, that the laser has to give up the coupling, 
in order to oscillate. This coupling is also called as lock-
in effect and the limit, at which this coupling is broken, 
is called the lock-in limit. As already mentioned the 
cause for the lock-in effect is the scattering at the optical 
splitting components. When the laser beam strikes an op-
tical surface, scattered light always appears in practice 
that goes in different directions of space depending upon 
the texture of the surface. 
 

Io(1-T-ε) Io

 

Fig. 38: Light scattering at an optical surface 

When a laser beam strikes a reflecting optical surface 
with the intensity 0I , the reflected ray has an intensity of 

only oI (1 T )⋅ − − ε , whereby T is the degree of trans-

mission and ε is the back scattering coefficient. Standard 
laser mirrors can be produced with T 1%≈  

and 410−ε ≈ . Now only that scattered light will have an 
effect on the laser process, which is scattered in the di-
rection of the laser mode (figure 38) and has the same 
phase. Although the back scattering coefficient is rela-
tively small, it is sufficient to couple both the gyrating 
modes and produce the lock-in effect. 
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−ΩLock
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Fig. 39: Lock-in Effect 

In principle, the lock-in effect can then be fully elimi-
nated, if one can make ε zero. In spite of the best polish-
ing and damping, no mirror can be produced today with 
ε = 10-7. The mathematical description of the lock-in ef-
fect is very complex and a complete solution is still not 
known, since a number of parameters are affecting the 
effect. For this reason, we shall be using here only the 
results of the model developed by Aronowitz (Fredrick 
Aronowitz, The Laser Gyro in “Laser Application” Vol. 
1, p. 134, Academic Press 1971). According to this, there 
are three areas (also see figure 38) for the beat frequency 
between both the ring laser modes: 
 

Lock

2 2
Lock Lock

Lock

0 Ω ≤ Ω


∆ν = ± Ω −Ω Ω ≥ Ω
Ω Ω Ω

 

 

Here 
8 F
L
πΩ = ⋅ω
λ

 and Lock
cA
L

Ω = ⋅  with A as am-

plitude are of a mode. There is no beat frequency below 
the threshold LockΩ , above it a non-linear relationship 

and a linear relationship only for higher values ofΩ . 
Aronowitz gives the following equation as approxima-
tion value for the lock-in threshold: 
 

( )Lock
c r cos
8 F
⋅ λω = ⋅ ⋅ β
π

 

 
In the above expression r is the back scattering coeffi-
cient and β is the phase angle between the back scattered 
and the resonator wave. Taking the worst case, when β is 
just 00, the back-scattering coefficient is about 10-4 and 
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the leg length of the ring laser is 0.5 m, we get the fol-
lowing value for the lock-in threshold: 

( )
8 9

4
Lock

3 10 632 10 10 0,2 °/s
8 0,25 sin 60

−
−⋅ ⋅ ⋅ω = ⋅ ≈

⋅ π ⋅ ⋅
 

This is a typical value for a good laser gyro. One could 
say here, that the lock-in effect would put a question 
mark over the substitution of the mechanical gyro by the 
laser gyro. However, this desire is so strong, that one is 
and always was on the lookout for ways of eliminating 
the lock-in threshold or at least reducing it to such an ex-
tent, that this aim could be fulfilled. The first solution 
naturally is to let the ring laser rotate at constant speed 
above the lock-in threshold. However, this reveals the 
practical difficulty, that the necessary electrical signals 
and supplies are fed to the system and taken off from it. 
Worldwide a procedure has been adopted which al-
though does not eliminate the lock-in effect, but certainly 
reduces its effect on the measurement inaccuracy. For 
this purpose, the complete ring laser is subject to a peri-
odic oscillation with ωD (figure 40). Since, a very small 
amplitude is selected for this oscillation, one refers to it 
as “dither”. 
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Fig. 40: The upper curve shows the angular speed of the 
ring laser and the lower one the interference signal. 

This measure ensures that the gyro is blocked only 
within the time τLock. Outside this zone, the gyro pro-
duces a certain number of light and dark bands in one as 
well as in the other direction, which together give the re-
sult zero. If the whole system now experiences an addi-
tional rotation, then this difference is not zero anymore, 
but instead gives the correct values also for the angular 
speeds below the lock-in threshold. However, this meas-
urement can be falsified by the error of the blocked con-
dition during τLock. The error thus arising can be esti-
mated as follows. For this we use the simple equation: 

Lock

Lock Lock

D

sin
2

2sin
4

τ ω ⋅  ω τ
= ≈ ω ⋅

τω  ω ⋅  

 

At the time Lockt
2

τ
=  the function has the value ωLock 

and ωD at one fourth of the total period τ. Since the lock 
area would run about twice within a full oscillation, one 

gets the following for the blocked time of the ring reso-
nator: 

Lock
Lock

D D

2 ⋅ω
τ =

π ⋅ ν ⋅ω
 (19) 

In the above equation Dν  stands for the frequency and 

Dω  for the maximum rate of rotation of the dither. If 

one selects an arrangement with D 200Hzν = , 

D 100 °/sω =  and the lock-in threshold may be at 1 0/s, 

then the blocked time would become: 

5
Lock

2 1 3.2 10  sec
200 100

−⋅τ = ≈ ⋅
π ⋅ ⋅

. 

There are no angular speeds that are less than 1 0/s within 
this relatively minor interval. One of the aims of the pro-
ject is to determine the inaccuracy of the measurement 
considering the real gyro parameters present. 
The next section will deal with the determination and the 
evaluation of the gyro signals. 

2.12 Measuring of the beat frequency 
We could determine that the emission frequencies of the 
excited neon atoms changed because of the rotation. This 
implies, that the gain curve of the corresponding speed 
class also changes and hence the frequency of the related 
laser emission. Hence, we expect a frequency difference 
as per equation (18) between the cw and the ccw waves 
upon rotation of the system in our ring laser. There are 
two methods for measuring this frequency difference. 
The first one uses the spatial interference as already ex-
plained in the Sagnac interferometer, and the second 
works according to the principle of beam analysis. The 
advantage of this method is that it is not necessary to 
combine both the rays by making use of sophisticated 
devices, in order to produce a spatial interference. 

2.12.1 Interference  
Nevertheless, we shall explain the first method, since it 
is widely used in technical laser gyros. After this, we 
shall explain the ray analysis. 
 

M1

cw ccw

coating

50 % Transmission

 

Fig. 41: Reflection prism for unifying the cw and the 
ccw wave 

By means of a reflection prism, whose hypotenuse is co-
ated with a translucent mirror layer (transmission 50%), 
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50%), the cw and the ccw waves are collated. This pro-
duces a spatial interference pattern whose light and dark 
transitions is detected with a photo detector and is 
counted. If one uses two detectors at a distance of a 
“half” transition (900 phase-displacement), one can de-
termine the direction in which the gyro is rotating. The 
beam analysis, as shown in figure 42, has less optical ef-
fort, but the determination of the direction of rotation is 
more complicated here. 
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cwccw

Icw
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Fig. 42: Beam analysis procedure 

2.12.2 Beam analysis 
With this method, the intensity of the cw and the ccw 
waves is determined with the help of two photo-
detectors. One gets the desired information by subtract-
ing both the signals. As already mentioned this process 
works only when a certain degree of scattering exists be-
tween the cw and the ccw waves. In reality, this is al-
ways the case. Assuming that the amplitude is Ao in the 
cw as also in the ccw, then an additional wave would 
arise due to back-scattering, whose amplitude can be 
designated as 0r A⋅ , whereby r is the back-scattering co-

efficient. Now since both the waves are propagating e.g. 
in the cw direction, they will overlap according to the 
principle of superposition to form a wave with an ampli-
tude of cwA . One finally gets the intensity cwI  from the 

square of the amplitude: 
 

( ) ( )
( ) ( )( )

( )
( ) ( )( )
( ) ( ) ( )

( )

cw 0 cw 0 ccw

0 cw ccw

2
cw cw

2

0 cw ccw

2
cw cw ccw

0 2 2
ccw

A A sin t rA sin t

A sin t r sin t

I A

I sin t r sin t

sin t 2r sin t sin t
I

r sin t

= ⋅ ω + ⋅ ω +β

= ⋅ ω + ω +β

=

= ⋅ ω + ω +β

 ω + ω ω +β
=  + ω +β 

 

 
The fastest photodetectors of today are in a position to 
detect frequencies up to 2 109 Hz. A detector will there-
fore detect only the average values. The sin2 terms oscil-
late with an essentially higher frequency ωcw or ωccw, 

whereby their amplitudes vary periodically between 0 
and 1, so that their temporal average value is ½. 
 

( ) ( )( )20
cw cw ccw

II 1 4r sin t sin t r
2

= + ω ω +β +  

We shall use the addition theorem for simplifying the 
mixed element: 

( ) ( )2 sin sin cos cos⋅ α ⋅ β = α −β + α +β  

The cos term oscillates with the frequency ωcw + ωccw 
and its amplitude varies between –1 and +1, so that the 
average value is zero. We thus, get the following for the 
intensity: 
 

( )( )( )20
cw cw ccw

II 1 2r cos t r
2

= + ω −ω −β +  

 

( )( )20
cw

II 1 2r cos t r
2

= + ∆ω ⋅ −β +  

Moreover, for the wave running opposite, we get: 

( )( )20
ccw

II 1 2r cos t r
2

= + ∆ω ⋅ +β +  

Upon building the difference: 

( ) ( )( )0I I r cos t cos t∆ = ⋅ ⋅ ∆ω ⋅ −β − ∆ω ⋅ +β  

( ) ( )0I 2 I r sin t sin∆ = ⋅ ⋅ ⋅ ∆ω ⋅ ⋅ β  (19) 
In case of the rotation of the ring laser above the lock-in 
threshold, equation (18) varies continuously between ∆I 
and -∆I corresponding to: 

( )0

1 t n
2I 2 I r sin
31 t n
2

π ∆ω ⋅ = ⋅∆ = ⋅ ⋅ ⋅ β 
− ∆ω ⋅ = ⋅ π

 

The maximum difference of the intensities of both the 
modes thus becomes: 

( )max 0I 4 I r sin∆ = ⋅ ⋅ ⋅ β  (1) 
One would now expect that this modulation depth would 
be relatively small because of r. However, one must con-
sider that the scattered wave also gains in the ring laser 
and thus shows a much better behaviour than expected 
by equation (19). In reality one gets about 30 – 40% 
modulation, this can be determined with the subsequent 
amplifying stages. Unfortunately, this method of beam 
analysis does not provide any information about the di-
rection of rotation of the ring laser. This must be done by 
detecting the appearance of the lock-in area during the 
dither movement, because the direction of rotation 
changes precisely in this area. This can become prob-
lematic due to errors appearing in this area because of 
disturbances. For this reason, this procedure can be used 
properly only when the complete system is closed and 
actively stabilized. In an early developmental phase we 
checked in detail this process at an open system, like the 
one being used here, and then rejected it, since an ex-
perimental system with a lot of freedom of adjustment 
does not possess a fixed working point as demanded by 
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this process. To justify the widest possible range of pos-
sible working points, we have realized a special interfer-
ence formation, which comes very close to these re-
quirements: a push-pull interference process as shown in 
figure 43. 
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cw ccw
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BBM

PD1
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Fig. 43: Push-pull interference formation 

In this arrangement, the beam splitter (BS) divides the 
intensity of the CCW mode in two equally large portions. 
The CW mode is deflected by the mirror BBM in such a 
way, that the beams overlap with those of the CCW mo-
des and interfere. The interference pattern detected by 
the photodetector PD1 is out of phase by 1800 as com-
pared to that of PD2 (figure 44). 
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Fig. 44: Ideal contrast 

Figure 44 shows the output signals of both the photode-
tectors PD1 and PD2 for the unrealistic case with 100% 
interference contrast. A comparator switches from logi-
cal zero to one or from one to zero exactly when both the 
signals possess the same amplitude. It is decisive here, 
which of the two signals has a positive or a negative slo-
pe. We shall now consider the real case (figure 45), in 
which the contrast is clearly less. The advantage of using 
signals out of phase by 1800 can be seen clearly here: the 
output signal of the comparator is independent of the in-
terference contrast and offset variations in a large range. 
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Fig. 45: Realistic contrast 
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