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1 Fundamentals 

1.1 Characteristics of light 
Light, the giver of life, has always held a great fascination 
for human beings. It is therefore no coincidence that people 
have been trying to find out what light actually is for a very 
long time. We can see it, feel its warmth on our skin, but we 
cannot touch it. The ancient Greek philosophers thought 
light was an extremely fine kind of dust, originating in a 
source and covering the bodies it reached. They were con-
vinced that light was made up of particles. As humankind 
progressed and we began to understand waves and radia-
tion, it was proved that light did not, in fact, consist of par-
ticles but that it is an electromagnetic radiation with the 
same characteristics as radio waves. The only difference is 
in the wavelength. We now know that the characteristics of 
light are revealed to the observer depending on how he sets 
up his experiment. If the experimenter sets up a demonstra-
tion apparatus for particles, he will be able to determine the 
characteristics of light particles. If the apparatus is one used 
to show the characteristics of wavelengths, he will see light 
as a wave. The question we would like to be answered is: 
What is light in actual fact? The duality of light could only 
be understood using modern quantum mechanics. Heisen-
berg showed, with his famous “uncertainty relation”, that 
strictly speaking, it is not possible to determine the place x 
and the impulse p of any given occurrence at the same time  

x
1x p
2
=∆ ⋅∆ ≥  

If, for example, the experimenter chooses a set up to exam-
ine particle characteristics, he will have chosen a very small 
uncertainty of the impulse px. The uncertainty x will there-
fore have to be very large and no information will be given 
on the course of the occurrence. Uncertainties are not given 
by the measuring apparatus, but are of a basic nature. This 
means that light always has the particular quality the ex-
perimenter wants to measure. We can find out about any 
characteristic of light as soon as we think of it. Fortunately 
the results are the same, whether we work with particles or 
wavelengths, thanks to Einstein and his famous formula: 

2E m c == ⋅ = ⋅ω  

This equation states that the product of the mass m of a par-
ticle with the square of its speed c corresponds to its energy 
E. It also corresponds to the product of Planck’s constant 
h 2== ⋅ π  and its radian frequency 2ω = π⋅ν . In this 
case ν represents the frequency of luminous radiation. 
In our further observations of the fundamentals of the 
Michelson interferometer, we will use the wave representa-
tion and describe light as electromagnetic radiation. All 
types of this radiation, whether in the form of radio waves, 
X-ray waves or light waves consist of a combination of an 

electrical field E
G

 and a magnetic field H
G

. Both fields are 
bound together and are indivisible. Maxwell formulated this 
observation in one of his four equations, which describe 
electromagnetic fields 

EH
t

GG ∂∇ × ≈
∂

 

According to this equation, every temporal change in an 
electrical field is connected to a magnetic field (Fig.1). 
 

E

H
X

Z

Y

 

Fig. 1: Light as electromagnetic radiation 

Due to the symmetry of this equation, a physical condition 
can be sufficiently described using either the electrical or 
the magnetic field. A description using the electrical field is 
preferred since the corresponding magnetic field can then 
be obtained by temporal derivation. In the experiments (as 
presented here) where light is used as electromagnetic ra-
diation, it is advantageous to calculate only the electrical 
fields since the light intensity is: 

2cI E
4

G⋅ ε= ⋅
π

. 

This is also the measurable size as perceived by the eye or 
by a detector. In this case, the speed of light is c in the re-
spective medium and ε is the corresponding dielectrically 
constant. Since we are comparing intensities in the same 
medium, it is sufficient to use  

2
I E

G
=  

E

X

Z

Y

 

Fig. 2: In this experiment we need only observe the elec-
trical field strength E 

The experimental findings agree with the theory of electro-
magnetic radiation if a harmonic periodic function becomes 
temporally dependent on the field strength of light. In its 
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simplest form this is a sine or cosine function. An amplitude 
Eo and a wavelength λ should be used in the definition of 
this kind of function. Let us begin with the equation: 

X 0
2E E sin x⋅ π = ⋅ ⋅  λ

, (1.1.1)

which we will elaborate and explain further. 
 

X

Z

Y
E

λ

Eo

 

Fig.3: Amplitude and wavelength 

In the above figure the light wave no longer oscillates in the 
Z-direction as in Fig.2 but at a certain angle to the Z- or Y-
axis. The X-axis has been chosen as the direction of propa-
gation of the wave. We still require information on the di-
rection in which the electrical field strength Ex oscillates to 
complete the description of the wave. Strictly speaking, the 
field Ex oscillates vertically to the direction of propagation 
X. However, we have to give information regarding the Z- 
and Y-axis. This leads to the term ‘Polarisation’ and Direc-
tion of Polarisation. In Figs. 1 and 2 we used linearly polar-
ised light with a polarisation direction in Z and in Fig.3 we 
used a different direction. We will now introduce the polari-
sation vector P, which is defined in the following Fig.4. We 
have to look into the light wave in the direction of the X-
axis for this purpose. 
 

E 0

EY

EZ

Y

Z

α

 

Fig.4: Definition of the polarisation vector 

We can observe a wave expanding in the X-direction and 
oscillating at the electrical field amplitude Eo below an an-
gle α to the Y-axis. The amplitude Eo is separated into its 
components, which oscillate in the Z- or Y-direction. We 

now write 0E
�

 instead of Eo to indicate that the amplitude Eo 

is now made up of individual components. 

( ) ( ) ( )2 2 22 Y Z Y Z
0 0 0 0 Y 0 Z

ˆ ˆ ˆE E E E e E e= + = ⋅ + ⋅  

In this case ( ) ( )Z Yˆ ˆe 0,1 ,e 1,0= =  is the unit vector in 

the Z- or Y-direction on the ZY-plane. Characteristically the 

unit vectors yield Zê 1=  and the scalar prod-

uct Z Yˆ ˆe e 0⋅ = . The equation (1.1.1) can now be general-

ised to: 

( ) ( )Y Z
X 0 Y 0 Z

2ˆ ˆE Y, Z E e E e sin xπ = ⋅ + ⋅ ⋅ ⋅  λ
 

At this point we come across a fundamental principle in 
classic wave theory, i.e. the principle of superimposition. A 
big word for the simple statement: 
Every wave can be represented as the sum of individual 
waves. 
In our example we had separated the wave as shown in 
Fig.4 into two individual waves, i.e. one that oscillates in 
the Z-direction and another in the Y-direction. We could 
just as well say that our wave was formed by the superim-
position of these two individual waves. The word interfer-
ence can also be used to mean superimposition. In this con-
text our wave was formed by the interference of two indi-
vidual waves. This is the basis for the functioning of the 
Michelson interferometer. An introduction to this interfer-
ometer now follows. For the time being, let us return to the 
polarisation vector. 
The polarisation vector P is also a unit vector, which always 
points in the direction of the oscillation of the electrical 
field Ex 

Y Z
0 0 0

Y Z
0 00

Ê E Eˆ ˆ ˆP e eˆ E EE
= = ⋅ + ⋅ , 

or as is written for vectors  
Y Z
0 0

0 0

E E
P̂ ,

E E
 

=   
. 

The polarisation vector for a polarisation in the Z-direction 
(0°) would then be, for example: 

P̂ (0,1)=  

for a polarisation direction of 45° it would be:  

( )1P̂ 1,1
2

= .  

The equation of the wave with any given polarisation direc-
tion will thus be  

( )X 0
2ˆ ˆE Y, Z P E sin xπ = ⋅ ⋅ ⋅  λ

, or  

( ) ( ) ( )X Y, ZÊ Y, Z E E sin k x= ⋅ ⋅ . (1.1.2)

We have introduced the wave number k in the above equa-
tion 

2k π=
λ

. 

The wave number k has the length dimension-1 and was 
originally introduced by spectroscopists because it was a 
size that could be measured immediately with their equip-
ment. We are using this size because it simplifies the writ-
ten work. 
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Till now we have only described the wave as a function of 
the location. This would be sufficient in order to understand 
the classical Michelson interferometer, but not for technical 
interferometers. We carry out the following hypothetical 
experiment to introduce the “time coordinate”: 
 

Location xX0

t0

t1

 

Fig. 5: Hypothetical experiment for the introduction of 
dependency on time 

The talented physicist Walter S. * (*Names have been 
changed) is working on new experiments with electromag-
netic waves in his laboratory. His colleague Gerd N. who is 
jealous of his rival’s success sees that the door to Walter S.’ 
laboratory has been left open a crack and uses the opportu-
nity to find out what his colleague is working on. In spite of 
his nervousness, Gerd N. forces himself to make painstak-
ingly accurate notes of his observations. He measures the 
time with his Swiss stop watch, a present from his father, 
who was also a physicist and notes the respective intensities 
of what he sees through the crack in the door. He rushes 
into his modest study, red in the face, and writes his obser-
vations into his laboratory records. Here we find the follow-
ing entries: 
“..........I stood at location X and looked through the crack in 
the door. I observed periodic oscillations in field strength, 
which fluctuated between a maximum and a minimum. I 
began measuring at the time t=0, when the field strength 
was at its minimum. At the time t1 I calculated the maxi-
mum field strength. The differences in time between the ex-
treme values stayed constant.” A graph of his measurement 
values follows: 
 

 

Fig. 6: Gerd N’s measurement curve 

Gerd N. further states that:”....... the time that passed be-
tween two maxima as the duration period τ. I have observed 
n of such maxima within one second. Obviously the field 

strength has a frequency of 
nν =
τ

 and follows a periodic 

function ( )0E E sin 2 t= ⋅ π ⋅ ν⋅  although this function 

begins with positive values. The measured values only cor-
respond to the observations if a constant is added to the ar-
gument of the sine  

( )( )0 0E E sin 2 t t= ⋅ π ⋅ ν⋅ − . 

Some weeks later both colleagues meet at a specialists’ con-
ference. As is often the case, the evening session of the con-
ference took place in a suitable atmosphere, where the par-
ticipants committed themselves to the team spirit over a 
glass of wine and agreed on all other things as well. Walter 
S. spoke openly about how he had managed to formulate 
the position of the course of a wave and wrote his formula 
on the beer mat, commonly used in this area 

( )0 0
2E E sin x xπ = ⋅ ⋅ −  λ

. 

How the evening finally ended is left to your own imagina-
tion. What is important is that both experimentalists meas-
ured the same field strength, one with a stopwatch in his 
hand, the other with a scale. Therefore  

( )( ) ( )0 0
0

E 2sin 2 t t sin x x
E

π = π ⋅ ν⋅ − = ⋅ −  λ
. 

This is the same as  

( ) ( )0 0
1t t x xν⋅ − = ⋅ −
λ

 

or 

( )
( )

0

0

x x
c

t t
−

ν⋅λ = =
−

.  

 
This hypothetical experiment has shown us that we can de-
scribe the wave by its temporal course on the one hand, and 
by the position of the course of a wave on the other. We 
have also found out the importance of the relationship of the 

speed c of a wave to its frequency and wavelength
cν =
λ

. 

If we write the connection with ω=2πν as a rotary fre-
quency we get:  

2 c k cπω = ⋅ = ⋅
λ

. 

Let us now return to the generalised formula for the tempo-
ral and spatial course of the field strength of a light wave. 
Since the sine is a periodic function we can include the 
temporal and spatial dependency into the argument. We 
would then get  

( ) ( ) ( ) ( )( )X Y, Z 0 0Ê Y, Z E E sin k x x t t= ⋅ ⋅ − +ω ⋅ −  

If we now make the constants kx0  and ωt0 into one constant 
δ we obtain the general formula  
 

( ) ( ) ( )X Y, ZÊ Y, Z E E sin k x t= ⋅ ⋅ + ω ⋅ + δ (1.1.3)

1.2 Superimposition and Phase δ   
δ is also described as a phase. Since this term is often in-
convenient we would like to examine it more closely. If we 
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put x=0 and t=0 into (1.1.3) the field strength will have a 

value of ( ) ( ) ( )X Y, ZÊ Y, Z E E sin= ⋅ δ  and thus defines 

an initial value for the amplitude. This value is or will be 
determined according to the physical situation. 
 

δ

W
a

v
e

2

W
a

v
e

1

 

Fig.7: Definition of phase δ 

Obviously phase δ contains information about the relation-
ship between two or more waves. Let us presume that the 
waves originate in a light source and phase δ contains in-
formation on how the wave was formed. Light waves are 
formed by emission processes. There is an emission proce-
dure for every photon or light wave. Such processes are al-
ways taking place when the light source is continuously il-
luminated. The emission procedures are distributed statisti-
cally according to the type of light source. Thus, phase δ is 
also distributed statistically. If the emission procedures are 
coupled to each other, as is the case with lasers, and all pho-
tons or waves have the same frequency or wavelength (they 
are monochromatic) the light is then described as coherent 
(holding itself together). If, however, phase δ is randomly 
distributed, then this light is incoherent. This is the case 
with thermal light sources, e.g. light bulbs. To judge the co-
herence of a light source, the characteristics of the emitted 
waves and/or photons would have to be classified. The 
waves (photons) are first sorted out according to their fre-
quencies (wavelengths) and then according to their phases. 
If we form small “containers” in our minds with the labels: 

2k numerical valueπ= =
λ

and 

numerical valueδ =  
and if we now sort out the photons in these containers and 
then count the photons per container, we could obtain a 
statement on the coherence. This kind of container is also 
called a phase cell. If all photons were in one container or 
phase cell, the light would be completely coherent. 
In the example according to Fig.7 the wave 2 has a phase of 
δ as opposed to the wave 1, in other words, the waves have 
a phase difference of δ, presuming that we have produced 
two such waves (this is exactly what the Michelson inter-
ferometer does). We expect a third wave through the prin-
ciple of superimposition, which is formed by the superim-
position or interference of the two basic waves. We will 
find out how this wave looks by simply adding both basic 
waves: 

Wave 1 ( ) ( ) ( )1 Y, ZÊ Y, Z E E sin k x t= ⋅ ⋅ +ω ⋅ + δ  

Wave 2 ( ) ( ) ( )2 Y, ZÊ Y, Z E E sin k x t= ⋅ ⋅ +ω ⋅  

Wave 3 ( ) ( ) ( )3 1 2
ˆ ˆ ˆE Y, Z E Y, Z E Y, Z= +  

It is now easy to imagine that a large number of waves with 
different frequencies ω or wavelengths λ and phases δ re-
sult in such a mixture and that it makes little sense to carry 
out superimposition or interference experiments with this 
light. Therefore light sources which emit light within a nar-
row emission spectrum with a phase as constant as possible 
are selected. Lasers are an example of such light sources. 
But when Michelson carried out his experiments around 
1870 he could not use lasers. He used the red emission line 
of a cadmium lamp whose emission bandwidth showed a 
coherence length of only 20 cm. This means that when, for 
example, waves at the position x=0 were superimposed 
with those at the position x=20, there was no readable inter-
ference any more. We will come back to the important term 
“coherence length” later on and discuss it in more detail. 

1.3 Interferometer 
An apparatus that produces this physical condition is shown 
in the following diagram. 
 

L1

L2

M1

M2

S

Exit 2

Exit 1

Entrance

 

Fig. 8: Michelson interferometer. 

We beam light into the entrance of the interferometer from 
some light source. The light is split into two bundles on a 
beam-splitting plate S. One bundle hits the mirror M1 and 
the other the mirror M2. The bundles will reflect back in 
themselves at these mirrors and reunite at the beam-splitting 
plate S. The respective bundles are split into two further 
bundles due to the characteristics of the beam-splitting plate 
and one bundle is led in the direction of exit 1, the other in 
the direction of exit 2 in the process. Exit 2 of the Michel-
son interferometer points in the direction of the light source, 
so this exit is practically of no use to us to set up 
photodetectors or imaging screens. This is why only exit 1 
will be mentioned. However, exit 2 must also be taken into 
consideration for the energy balance. Whatever technical 
model of an interferometer is chosen, it can be represented 
easily in an optically circuit diagram.  
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L1

L2

Exit 1

Exit 2

Entrance
W

a v e 1

W
a v e 2  

 

Fig.9:”Optical circuit diagram” of an interferometer 

The light, which is put into the entrance of the interferome-
ter, is split into two bundles. How this happens technically 
is not important for the time being. This kind of element can 
generally be called a directional coupler. Bundle 1, or, in 
the simplest case the wave 1 runs through the path L1 and 
the other wave 2 runs through the path L2. Both waves are 
brought together in a mixer. This mixer has two exits. In the 
Michelson interferometer directional couplers and mixers 
are one and the same element. We are only interested in exit 
1 for the time being. As we will see later on, exit 2 is sym-
metrical to exit 1. We now just have to calculate wave 3 at 
exit 1 which is formed out of the superimposition of wave 1 
with wave 2 which have travelled along a path from L1 or 
L2. Without jeopardizing the general validity of the solu-
tion, we can assume that the electric field strength only os-
cillates in the Y-direction. As already defined in the begin-
ning the waves propagate in the X-direction. Although the 
direction of the bundle of rays can point in other directions 
after separation, they should have the same direction of 
propagation, at least in the mixer, if they are to interfere at 
all. 
 

Wave 1 ( )1 01 1E E sin k L t= ⋅ ⋅ +ω ⋅  

Wave 2 ( )2 02 2E E sin k L t= ⋅ ⋅ + ω ⋅  

Wave 3 3 1 2E E E= +  

 
Since both waves E1 and E2 are formed when the entering 
wave E0 is split and the splitter should separate them sym-
metrically, both partial waves do not have any phase shift δ 
with regard to each other. 

( ) ( )3 01 1 02 2E E sin k L t E sin k L t= ⋅ ⋅ +ω ⋅ + ⋅ ⋅ + ω ⋅
 
A screen or photodetector is installed at exit 1. The human 
eye and the photodetector are not in a position to register 
electric field intensities, but can only register the light inten-
sity I which is connected to the field strength: 

2I E=  

( ) ( )( )2

01 1 02 2I E sin k L t E sin k L t= ⋅ ⋅ + ω ⋅ + ⋅ ⋅ + ω ⋅

( )
( ) ( )

( )

2 2
01 1

01 02 1 2

2 2
02 2

I E sin kL t

2E E sin kL t sin kL t

E sin kL t

= ⋅ +ω

+ +ω +ω

+ ⋅ +ω

 

 
To simplify the mixed term we use the relation:  
 

( ) ( )2 sin sin cos cos⋅ α ⋅ β = α −β + α +β  

 
and obtain: 
 

( )
( )( )
( )( )

( )

2 2
01 1

01 02 1 2

01 02 1 2

2 2
02 2

I E sin kL t

E E cos k L L

E E cos k L L 2 t

E sin kL t

= ⋅ +ω

+ −

+ + + ω

+ ⋅ +ω

 

 
The expression for light intensity, which is perceived either 
by a detector or by our own eyes, consists of four terms. 
Only the second term is not dependent on the time t. All 
other terms oscillate with the frequency ω. We use 

c2 2ω = πν = π
λ

 

to determine this ω. The frequency of light is ν and has a 
wavelength λ and a speed c. In the later experiments we 
will select the light emitted by a Helium-Neon laser. The 
wavelength of this light is 633mm. Using this value and the 
speed of light c = 3⋅108 m/s the frequency ν is calculated as:  

8
14

9

3 10 4,7 10 Hz
633 10−

⋅ν = = ⋅
⋅

. 

The sine of the first and last term oscillates at this frequency 
and the third even oscillates at double this frequency. Nei-
ther the eye nor any photodetector is capable of following 
this extremely high frequency. The fastest photodetectors 
nowadays can follow frequencies of up to approx. 2⋅109 Hz. 
This is why a detector, and even more so, our eyes can only 
perceive average values. The sin2 terms oscillate between 0 
and 1; their temporal average value is therefore1/2. The co-
sine term oscillates between -1 and +1, the average value is 
zero. The intensity I would therefore be:  
 

( )2 2
01 02 01 02

1 1I E E E E cos k L
2 2

= + + ⋅∆  

1 2L L L∆ = − . 

 
Obviously I is maximum if the cosine is one. This is always 
the case when its argument is zero or an integral multiple of 
2π. I is minimum just at the time when the cosine is –1 
 

( )22 2
max 01 02 01 02 01 02

1 1 1I E E E E E E
2 2 2

= + + = +  

( )22 2
min 01 02 01 02 01 02

1 1 1I E E E E E E
2 2 2

= + − = −  

 
Let us remind ourselves that  

2k π=
λ

 

and that it is constant at a stable wavelength. The light in-
tensity at exit 1 is therefore obviously only dependent on 
the path difference L1-L2. If both paths having the same 
length, both partial waves interfere constructively and the 



 EXP10 Michelson Interferometer 

Page - 8 - 
Dr. W. Luhs MEOS GmbH 79427 Eschbach July 1995, revised February 2000/ July 2003 

light intensity observed is maximum. If the path difference 
is just λ /2 then: 

2k L
2

π λ⋅∆ = ⋅ = π
λ

. 

The cosine is then -1 and the light intensity I at the exit be-
comes minimum. Let us divide the initial intensity into two 
partial ones of equal size, i.e. E01 and E02. In this case even 
the light intensity is zero. Here, both partial waves interfere 
destructively. Keeping in mind that the wavelength for our 
experiment is 633 nm and that it leads to a shift from one 
wave to another by only λ/2=316.5 nm = 0.000000316 mm 
(!) from a light to a dark transition at exit 1, this type of in-
terferometer is a highly precise apparatus for measuring 
length. 

Path difference in units of wavelength

Li
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Fig.10:Interferogram 

1.4 Real interferometer 
In the preceding chapter, we assumed that we had ideal 
light sources and optical components at our disposal. Prac-
tical interferometry is, in fact, characterised by these com-
ponents. Michelson (1871) did not construct his interfer-
ometer to examine the interference of light, but to prove the 
‘world ether’ theory. It was therefore an optical instrument 
that underwent constant development. Since the interfer-
ence fringes had to be judged with the naked eye, it was the 
aim of this further development to maximise the contrast in 
light and dark shades. 

1.4.1 Contrast or visibility 
Michelson defined as a scale for the measurement of con-
trast:  

max min

max min

I IV
I I

−
=

+
. 

Historically, the word visibility or clarity was also chosen 
for contrast. 
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Fig.11: Signal at exit 1 at I01= 0.2 Io and I02=0.8 Io 

If, for example, the splitting relationship of the beam splitter 
is not exactly 1 then the interferogram will change as shown 
in Fig.11. 
 
Using 

max 01 02 01 02
1 1I I I I I
2 2

= + + ⋅  

and 

min 01 02 01 02
1 1I I I I I
2 2

= + − ⋅  

we obtain 

01 02 01 02

01 02 0

2 I I 2 I I
V

I I I
⋅ ⋅ ⋅ ⋅

= =
+

 

for the contrast. According to Fig.10 the contrast is V=1 
and in Fig.11 V=0.8. A contrast reduction also occurs if, for 
example the adjustment is not optimal, i.e. the overlap of 
both the interfering rays is not 100 %. In this case 

01 02 0I I I+ <  
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Fig.12: Interference signal at exit 1 at I 01= 0.2 I0 and 
I02 = 0.4 I0, caused by maladjustment and a 
beam splitter which is not ideal. 

1.4.2 Light sources and coherence 
Till now we have tacitly assumed that the light source only 
has a sharp frequency ω. This is never the case in practice. 
We would therefore like to examine the influence of the 
spectral emission of the light source on interference forma-
tion. Radiation that gets its energy from the warmth of a 
radiating body is known as thermal radiation and is sent out 
by glowing solids (metal, coal etc.) or gases at high pres-
sures. But radiation can also be produced without extracting 
energy from the warmth of a medium, e.g. by introducing 
electrical energy (discharge in gas). In this type of radiation 
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production, the temperature of the radiator (except in loss 
mechanisms) does not change. The light produced in this 
way is known as “cold light” or also luminous radiation. 
The type of emission depends on the excited electronic or 
vibronic states of the atoms and molecules concerned. Light 
sources that emit light based on these mechanisms are an 
important component of modern light technology. Whereas 
light bulbs are thermal radiators, fluorescent lamps, gas dis-
charge lamps, monitors as well as lasers are sources of cold 
light. 

1.5 Coherence 
In classic optics, light was described as coherent if it could 
produce interferences. The term coherence was elaborated 
by the photon statistics introduced by quantum optics. It 
says, that light is coherent when photons originate in the 
same phase cell, that is; they have the same frequency and 
phase within Heisenberg’s uncertainty principle. Mono-
chromatic light is only coherent if the partial waves also 
have the same phases. 
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Fig.13: Light, whose photons originate from the smallest 
possible phase cell according to Heisenberg’s 
uncertainty principle, is coherent. 

Classic optics states that light is coherent when it shows 
signs of interference. The narrower the emission line width 
∆ω is the higher will be the contrast observed in this proc-
ess. There is obviously a connection between the contrast or 
visibility V of the interferogram and the line width of the 
light source used. 
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Fig.14: Light with a narrow band emission with emis-
sion bandwidth ∆ω. 

If we follow the views of classic optics in the next chapters, 
this is because we will not touch the limits of Heisenberg’s 
uncertainty principle by far, in spite of using a laser as the 
light source for the interferometer. The emission bandwidth 
and the emitted line width of the technical HeNe laser used 
is very big compared to the theoretical natural bandwidth of 
a line. 
 
1.6 Thermal light 
We know from our daily observations that a hot body trans-
mits light radiation. The higher the temperature of the body, 
the whiter the light seems. 
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Fig.15: The spectral distribution of a black body radia-
tor (thermal radiator, Planck’s radiation law) 
for various temperatures 

It can thus be concluded that this kind of radiator has a very 
large emission bandwidth ∆ω. Therefore thermal light 
sources are not suitable for interferometry. 

1.7 Cold light 
Another type of light production is the light emission of at-
oms and molecules, which show a clear spectral structure 
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characteristic of certain atoms, and molecules, contrary to 
the continuous radiation of the temperature radiators. Apart 
from their characteristics as a light source, the main interest 
in spectra was to use them to find out more about the struc-
ture of atoms and molecules. 
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Fig.16: Bohr’s idea of the atom 

Einstein elaborated Bohr’s’ theories on the atom model to 
the extent that light emitted or absorbed from the atoms can 
only have energies of E2-E1=hν (Fig.16). His work and 
measurements proved that both in a resonant cavity and in 
the case of atomic emission discrete energies must be as-
sumed. Einstein started off by trying to find one single de-
scription for these two types of light sources. He found the 
solution to this problem in 1917 when he derived Planck’s 
hypothesis once more in his own way. Photons or a radia-
tion field are produced through the transition from 2 → 1. 
With regard to what we have already considered, the fre-
quency of the radiation produced in this way should actu-
ally be determined by E2-E1 = h ν0. However, keeping in 
tune with Heisenberg’s uncertainty principle  

x
1x p
2
=∆ ⋅∆ ≥ or

1E t
2
=∆ ⋅∆ ≥ , 

which states that every emission process is affected by an 
uncertainty and the emission line therefore always has a 
certain width ∆ω. 
 

δωFWHM

ω0

re
l.

in
te

n
si

ty
ρ(

ω
)

Frequency  
 

Fig. 17: Natural line width 

( )
( ) ( )2 2

0 s

1
1/ 2

ρ ω =
ω −ω + ⋅τ

 

This type of curve represents a Lorentz curve. Here, ω0 is 
the resonant frequency and 

s
21

1
A

τ =  

is the average life of state 2. The half-width value ∆ω (or 
also FWHM, Full Width at Half Maximum) of the curve 
according to Fig.17 is calculated by inserting the value for 
ρ(ω) = 1/2. We find that  

( ) 21nat Aδ ω =  (1.7.1) 

is the natural line width of a transition, defined by the Ein-
stein coefficient A21, which has a particular value for every 
transition. The results gained can also be interpreted to 
mean that state 2 does not have any sharply defined energy 
but an expansion with a half-width value of ∆E= 2 π h A21. 
There would therefore be some uncertainty in this state. 
Quantum mechanics has shown that this effect is of funda-
mental importance. It has been called the Heisenberg’s un-
certainty relation after its inventor. In normal optical transi-
tions, the value of τs is between 10-8 and 10-9 sec. This life-
time, determined by the spontaneous transitions alone is a 
decisive factor for the so-called natural half-width value of 
a spectral line. Regarding descriptions, it must be stressed at 
this point that we must differentiate between the width of a 
state and the width of a line as well as between the terms 
state and line. Atomic states always exist, so no statement 
will be made on whether the state is occupied or empty. A 
line can only be formed if, for example, an emission occurs 
by the transition from the state from to 2→1. The line is a 
word used by spectroscopists. They may produce, for ex-
ample, photographic plates using their spectral apparatus, 
on which fluorescent light is shown divided up into its 
wavelengths. They use slits in the optical radiation path for 
an easy evaluation of the spectra. Fig 18 shows this kind of 
line spectrum. 
 

 
 

Fig.18: Photograph of the emission of a light source with 
the corresponding energy level showing a so-
called line spectrum. 

The spectrum according to Fig.18 can be seen from the line 
widths as well as from the emission wavelengths. Please 
note, however, that the measurement apparatus makes the 
line widths appear larger than they actually are. 
If the spectral distribution of a line radiator were carried 
into that of the thermal radiator, the result would be a nar-
rower line than the one in Fig.15. 
Let us return to the influence of the spectral bandwidth ∆ω 
on the contrast of our interferometer. To make it easier we 
have selected the intensities as 

01 02 0
1I I I
2

= = ⋅  

and obtain for the intensity of the interfering waves: 

( ){ }0I I 1 cos k L= + ⋅∆ . 

However, now the intensity I0 is a function of ω:  

( ) ( )0
ˆ ˆI I I→ ω = ⋅ρ ω ⋅∂ω  
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So, we must integrate over all ω: 

( ) ( ) ( ){ }ˆ ˆI I I cos / c L
+∞

−∞

= ⋅ρ ω + ⋅ρ ω ⋅ ω ⋅∆ ⋅∂ω∫  

and obtain for the interferogram 

( ) ( )0
ˆI I I cos / c L

+∞

−∞

= + ⋅ρ ω ⋅ ω ⋅∆ ⋅∂ω∫  (1.7.2) 

We can obtain the contrast or the visibility of the interfer-
ence from the extreme values of (1.7.2):  

( ) max min

max min

I IV L
I I

−
∆ =

+
 

Thus the contrast function V, which is still dependent on ∆L 
after the integration, is the envelope of the interferogram 
I(∆L). According to the form the emission line takes, or 
how the function ρ(ω) is made up, we can obtain the con-
trast of the function of the path difference ∆L and the corre-
sponding contrast function V(∆L) by using the above inte-
gration. The emission line of the laser, which we will use in 
the later experiment, can be described using a Gaussian 
function with a bandwidth ∆ω. The integral according to 
(1.7.2) can be calculated in this way. Counting over is car-
ried out in [1] and the contrast function is shown in the fol-
lowing diagram. 
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Fig.19:  Contrast as a function of the path difference of 
a light source with an emission bandwidth of 5 
or 10 MHz (Laser). 

The diagram on the right hand side of Fig.19 shows the 
contrast function. It shows that the contrast in a Gaussian 
distribution curve gradually drops as the path difference be-
tween both interfering waves increases. Theoretically, if the 
path difference is infinitely long, the contrast will eventu-
ally be zero. However this is not a practical answer. Al-
though technical interferometers are being used for a long 
time there is no information on a marginal contrast, which 
merits an evaluation. We have therefore taken the liberty of 
defining the marginal contrast ourselves. We would say that 
if the contrast V has dropped to 

max2

1 V 0,14
e
⋅ ≈  

the practical coherence length Le has been reached. Since 
these associations are important, we should now examine 
the practical conditions in more detail in anticipation of the 
experiments that are still to come. In the course of our stud-
ies, we had taken a partial ray from a ray of light at a loca-
tion situated at any given distance from a light source. We 
will give the coordinate z1 to this location. Another partial 
ray is taken from a second location with the coordinate z2. 

Both the partial rays are joined together and the intensity of 
the superimposed ray is measured. 
 
Light source

Z1 Z2

Path difference

 
 

Fig.20: Definition of coherence time 

The photons taken from location z2 have to travel a longer 
path than the photons at location z1. Since all photons fly at 
the speed of light c, the photons at location z2 must have 
been “born” earlier than those at z1. The time difference be-
tween both photon generations is obviously  

Lt
c
∆∆ =  

If we choose a path difference ∆L, that is large enough to 
cause a drop in contrast to the value we defined, then the 
corresponding running time ∆t will be known as the coher-
ence time. We have introduced this term for didactic rea-
sons. It is not required in our further observations. The con-
struction according to Fig.20 has a considerable disadvan-
tage in that it cannot be carried out practically. The simplest 
basic form of a regulatory device for interference is the 
Michelson interferometer. Although the physical situation 
we have just discussed is the same, the path difference must 
be observed more closely. 
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Fig.21: Calculating the path difference ∆L using the Mi-
chelson interferometer 

The beam splitter S splits the incoming beam. This is the 
origin of our system of coordinates. The mirror M1 should 
always be static, whereas the mirror M2 should be movable. 
Thus the two radiation paths form two arms of the interfer-
ometer. The one with the static mirror is known as the ref-
erence arm and the one with the movable mirror is the index 
arm. The partial beam in the reference arm travels a path of 
2 L1 before it returns to the reunification point at the beam 
splitter S. The path 2L2 is crossed in the reference arm. The 
path difference is therefore: 
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( )2 1L 2 L L∆ = ⋅ −  

We assume that the thickness of the beam splitter plate is 
zero. If L2 = L1, the path difference is zero. This can be ad-
justed for any number of intervals between the mirrors. In 
this state, the Michelson interferometer is symmetrical and 
even white light produces an interference pattern. This type 
of interferometer is sometimes also known as a white light 
interferometer. To find out the coherence length of the light 
source, the path difference is increased by shifting the mir-
ror M2. There should be no maladjustment while doing this, 
since this will also reduce the contrast. If we measure this 
contrast as a function of the path difference, we get the con-
trast function. The point, at which the contrast is below the 
value already given by us, is the point where the coherence 
length has been reached. The following interference pat-
terns would probably be seen on a screen. 
 

 
 

Fig.22: Decreasing contrast with an increase in path 
difference. 

Michelson carried out his experiments with the red line of a 
cadmium lamp that had a coherence length of only 20 cm. 
Since the index arm is crossed twice he had a measurement 
area of only 10 cm at his disposal. By measuring the con-
trast function, it is possible to find out the line width of the 
light source with (1.7.2). Can you imagine that Michelson 
carried this out with the green Hg line and saw 540,000 
wavelengths in path difference with his naked eye, Perot 
and Fabry saw 790,000 and Lummer and Gehrcke as much 
as 2,600,000! Try and picture this process: The shifting of 
the measurement reflector, observing the light and dark 
band with the naked eye and counting to 2,600,000 at the 
same time. Till now we have examined the situation where 
the light source has different emission bandwidths but only 
one individual emission line. If we use a laser as a light 
source, the emission can consist of several so called ‘longi-
tudinal oscillation modes’, as long as we do not take spe-
cific measures to produce only one. In the following ex-
periment a laser is used which emits only two modes. Each 
of the two modes has a narrow bandwidth (approx. 2 MHz) 
but both modes have a difference in frequency of 900 MHz. 
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Fig.23: Emission spectrum of the two-mode HeNe laser 
used 

The expected interferogram will consist of a superimposi-
tion of the waves with both the frequencies ω and δω. 

0
1 1I I 1 cos L cos L
2 c 2 c

 ω ω + δω    = ⋅ + ⋅∆ + ⋅∆        
We can form a picture of the contrast function without hav-
ing to make an explicit evaluation of the integral according 
to (1.7.2) by discussing the interferogram for some values 
of ∆L, using  

cos cos 2 cos *cos
2 2

α +β α −β   α + β = ⋅       
 

 

0
2I I 1 cos L cos L

2c 2c
 ω + δω δω    = + ⋅∆ ⋅ ⋅∆        

 

Since ω >> δω    

0I I 1 cos L cos L
c 2c

 ω δω    = + ⋅∆ ⋅ ⋅∆        
. 

Since δω is not dependent on ω, this term is constant as far 
as the integration of all wavelengths is concerned and the 
contrast function of the single mode emission V1(∆L) be-
comes: 

( ) ( )2 1V L V L cos L
2c
δω ∆ = ∆ ⋅ ⋅∆  

 

The contrast function resulting from the two-mode emission 
is reproduced by the single mode emission, but the perio-
dicity δω/2 superimposes with the cosine. The contrast is 
therefore zero for  

( )L 2n 1
2 c 2
δω π⋅∆ = + ⋅
⋅

, n = 0,1,2 .... 

or 

( ) cL 2n 1∆ = + ⋅
δω

. 

The intervals between the zero points is exactly  
cL

2
∆ =

⋅δν
. 

Let us remind ourselves of the interval in frequencies of 
longitudinal modes of a laser resonator:  
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c
2 L

δν =
⋅

. 

 In this case L is the interval between the laser mirrors, so 
the interval between the zero points of the contrast corre-
sponds exactly to the resonator length of the two-mode laser 
used. 
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Fig.10: Contrast as a function of the path difference of 
a single mode and a two-mode laser 

Although the radiation is coherent, there is a disappearing 
contrast. In this case, it is not due to a lack of coherence, but 
to the phenomenon of optical interference. If the laser emis-
sion is put onto a photodetector at a suitably fast speed, we 
will have direct proof of optical interference. Optical inter-
ference can be demonstrated using an oscilloscope or a 
spectrum analyser. However, this would mean that when a 
two-mode laser is used in interferometry the available 
measurement area of the index arm would be limited to L/2. 
Although the contrast does increase when this value is ex-
ceeded there is no information available during the zero 
crossings. 

1.8 Wave fronts 
The planes at which light has the same phases in a spatially 
wide radiation emission are known as wave fronts. 
 

 
 

Fig.24: Plain wave fronts of a parallel light bundle 

If the light spreads itself in a parallel fashion, the planes of 
identical phases will be plane and therefore the wave fronts 
are called plane. 
 

 
 

Fig.25: Curved wave fronts of a divergent light bundle 

However, if the radiation expansion is divergent, the wave 
fronts will be curved. If the radiation spreads in a solid an-
gle with the same divergence in all directions, the wave 
fronts look like the surface of calotte shells. If two parallel 
light bundles are superimposed with plane wave fronts, we 
will see only brightness or darkness on a screen according 
to the relationship of the phases of the waves. If both bun-
dles are attracted to each other there will be a striped pat-
tern. 
 

Line of sight

 

Fig.26: Two light bundles attracted to each other with 
plane wave fronts 

If one plane of a wave front, which represents the maxi-
mum of the field strength, cuts the plane of the minimum of 
a second wave front, then these are the locations for de-
structive interference. Since the wave fronts in the example 
according to Fig.26 represent planes these intersecting 
points are on a straight line. 
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Line of sight

 
 

Fig.27: Superimposition of two divergent light bundles 

If, however, two light bundles with a slight divergence are 
superimposed, the intersecting points of the field strength 
minima or maxima lie on circles in space. A ring structure 
is formed. 

1.9 Gaussian beams 
In reality, there are no actual parallel light bundles and even 
wave fronts also only exist at a particular point. The cause 
for the failure of geometric optics lies in the fact that they 
were established at a time when people did not yet know 
that light is an electromagnetic wave and that its behaviour 
could therefore be described using Maxwell’s equations. 
We will again use the wave equation already known to us 
for this purpose  

2 2

2 2

n EE 0
c t

KK ∂∆ − ⋅ =
∂

 

If light were limitless, it would spread itself in all directions 
in space as a spherical wave. 

E E(r)
G G
= with 2 2 2 2r x y z= + +  

If, however we are interested in the technically important 
case of the spherical wave spreading in direction z in a 
small solid angle then the solution is an equation for the 
electrical field  

E E(r, z)
G G
= with 2 2 2 2r x y z= + +  

The solution to the wave equation is found in fields, which 
show a Gaussian shaped intensity distribution over the ra-
diation cross-section and are therefore called Gaussian 
beams. According to the existing marginal conditions, 
Gaussian beams can be found in various modes. Such 
beams, especially the Gaussian basic mode (TEM00) are 
preferably produced by lasers. However, the light coming 
from any light source can be seen as a superimposition of 
many such Gaussian modes. But the intensity of a pure 
mode is very small compared to the total intensity of a light 
source. The situation is different with lasers where the 
whole light intensity can be produced in the basic mode 
alone. This, as well as the monochromatic nature of laser 
radiation, is the main difference compared to conventional 
light sources. A Gaussian beam always has a beam waist. 

The beam radius w (w=waist) is a result of the solution of 
the wave equation  

( )
2

0
R

zw z w 1
z

 
= ⋅ +   

 

w0 is the smallest beam radius of the beam waist and zr is 
the Rayleigh length. 
Fig.29 shows the passage of the beam diameter when it is 
dependent on the length z. 

2
R 0z w π=

λ
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Fig.28: Beam diameter of a Gaussian beam in the basic 
mode TEMoo as a function of the location z. 

The beam spreads itself in the z-direction. At the point 
when z=z0 the beam’s radius is at its smallest. As the inter-
val increases, the beam radius grows linearly. Since Gaus-
sian beams are spherical waves, there is a radius of curva-
ture of the wave front for every point z. The radius of cur-
vature R can be calculated using the following equation:  

( )
2
rzR z z

z
= +  

This situation is shown in Fig.29.  
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Fig.29: The radius of curvature of a wave front as a 
function of the distance from the beam waist 
at z=0 

The radius of curvature has a minimum at z = zr and R in-
creases by 1/z compared to z = 0. The radius of curvature is 
infinite at z=0. The wave front is even at this point. The ra-
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dius increases again linearly above the Rayleigh length zr. 
This statement is of fundamental importance. It states that a 
parallel beam only exists at one point of a light wave, that 
is, in its focal point. 
 
In the region for  

r rz z z− ≤ ≤  

a beam can be seen as approximately parallel or collinear. 
In Fig.30 the Rayleigh area is drawn in as well as the diver-
gence Θ in the far field region, i.e. z>>z0. 
The graphic representations suggest that one of the signifi-
cant characteristics of laser beams, i.e. their lack of diver-
gence, cannot be shown in this way. 
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Fig.30: Rayleigh range zR and Divergence Θ in the far 
field region, i.e. z>>zR) 

This is because the relationship of the beam diameter to z in 
the graphs has not been standardised. If we take a HeNe la-
ser (632 nm) with a beam radius of wo =1mm at the exit of 
the laser as an example, we get:  

2 6
R 0 9

3.142 z 2w 2 10 9,9 m
623 10

−
−

π⋅ = = ⋅ =
λ ⋅

 

for the Rayleigh range 2zr. A moderate picture would there-
fore show only a thin line in the drawing. 
 

1.10 Technical interferometers 
In modern technical interferometers used in the calibration 
of CNC machines, the main light sources used are HeNe la-
sers. Modern CNC machines are positioned precisely at 1 
µm. Since this precision is dependent on the condition of 
the machines, a periodic calibration of the machines must 
follow. The measurement apparatus, the laser interferometer 
is supposed to be more precise than the test specimen 
according to Bernd’s Law, i.e. it has a precision of 0.1 µm. 
As we have already said previously and will be studying in 
more depth, it is possible to carry out resolutions into the 
nm area with laser interferometers. However, we have yet 
to establish the precision. We must first observe the errors 
for this purpose. If we want to reach the path S of the mov-
able reflector M2 through the number of light/dark transi-
tions N, we must use the following equation 

S N λ= ⋅
ε

 

In this equation, λ is the wavelength of the light source used 
and ε is an integer scaling factor which had a value of 2 in 
the interferometer we have talked about till now. We must 

also keep in mind that the value of the wavelength λ de-
pends on the refractive index n of the medium in which the 
wave expands. 

0 1S N
n
λ

= ⋅ ⋅
ε

 

λ0 is the wavelength in vacuum. If we use the total differen-
tial to determine the relative error of S, we will obtain: 
 

0

0

S N n
S N n

∂λ∂ ∂ ∂ ∂ε= + + +
λ ε

 

In a machine working range S of 1m the typical relative 
mechanical error of the machine will be 1µm/1m=10-6. This 
means that the relative error of the laser interferometer for 
determining S should be smaller than 10-7  

7S 10 !
S

−∂ ≤  

The sum of the absolute values of individual error therefore 
has to be smaller than this value  
 

70N n 10
N n

−∂λ∂ ∂ ∂ε+ + + ≤
λ ε

 

 
Let us first consider the term  

N
N
∂

 

The absolute error ∂N for determining a change from a dark 
to light fringe is 1/100 of one counted fringe. There are 
3,164,557 fringe counts N for 1m resulting in 
 

9N 0,01 3 10
N 3.164.557

−∂ = = ⋅  

 
This is sufficiently precise. The errors formed through the 
variation in wavelength are: 

0
60,632 10−

∂λ ∂λ=
λ ⋅

. 

This leads to the demand that the absolute precision δλ0 of 
the vacuum wavelength of the laser is smaller than 10-13 m 
or 10-7 µm. The wavelength of a commonly used HeNe la-
ser can fluctuate in a range of 1.5 10-6. The laser will then 
have to be additionally stabilised for a measurement area of 
1m. The term  

n
n
∂

 

is caused by fluctuations in the refractive index caused by 
the surrounding air. The respective values of n are depend-
ent on the air pressure, air temperature, the relative humid-
ity and foreign gas in the surrounding air. The biggest influ-
ence on errors is caused by the variation in air pressure and 
in temperature. These values must be applied to reduce 
these errors and be taken into consideration in a correction 
calculation using the Edlen formula. The air pressure should 
be measured with an accuracy of 0.1 Torr and the tempera-
ture of 0.1° C, so as not to exceed the permitted errors. The 



 EXP10 Michelson Interferometer 

Page - 16 - 
Dr. W. Luhs MEOS GmbH 79427 Eschbach July 1995, revised February 2000/ July 2003 

final source for an error is the scaling factor ε that is, how-
ever, a flawless constant in the apparatus. Modern HeNe la-
ser with stabilised frequencies reach a precision of 10-9. 
Apart from the type of stabilisation, all lasers have one dis-
advantage: Light cannot be reflected back into the laser. 
This is because the returning photons have another phase as 
those responsible for the stimulated emission in the laser 
resonator. Photons coming from outside would stimulate an 
emission which is not in phase with the basic oscillation of 
the resonator and can therefore stimulate undesired modes, 
which have a frequency other than the desired one.  Be-
cause of this reason, the Michelson interferometer had to be 
modified so that no direct back coupling of light in the 
resonator would be possible. 
 

CapillaryCathode

Anode

Laser Mirror Output Mirror

Resonator length L

 
 

Fig.31: Commonly used HeNe laser tube with mirrors 
soldered on to it with a distance of L. 

The resonator length is approx. 130mm for a single mode 
tube and approx. 180mm for a two-mode tube. 
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Fig.32: Setup of a technical Laser Interferometer. 

Instead of the beam splitter plate in the Michelson construc-
tion, a beam splitting prism is now used and instead of the 
plane mirrors, triple reflectors are used. This arrangement 
ensures that no radiation can return to the laser, contrary to 
the Michelson interferometer. The surfaces of optical com-
ponents are also given anti-reflection layers to avoid return 
reflections from their surfaces. Polarising beam splitting 
prisms are usually used. The light in the reference arm is 
then vertically or orthogonal polarised with regard to the 
index arm. Before we discuss signal formation we will ex-
plain the structure and function of the optical components. 

1.10.1 Beam splitting prism 
The term beam splitting prism is used in common jargon. 
Actually a plate could also have been used instead of the 
prism. However, as shown in the following diagram, the 
plate has some disadvantages. 

 

Fig.33: Arrangement with a beam splitting plate 

On one hand, there is a misalignment of beam for the sensi-
tive index arm, which depends on the angle adjustment of 
the plate. On the other hand, the index beam crosses the 
plate twice. If the temperature of the plate changes, then its 
refractive index also changes considerably. This causes a 
phase shift that is interpreted as a movement of the triple re-
flector. The structure is not thermally compensated for. 
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C

D
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Fig.34: Arrangement with a beam splitting prism 

In this arrangement, the reference beam crosses the paths 
C+ triple reflector +D after the splitting point in the glass 
and up to the reunification point. The index beam crosses 
the paths E + triple reflector + A. These paths have the 
same length. A temperature change in the optical compo-
nents therefore does not lead to a phase shift. The arrange-
ment is compensated for thermally with regard to the opti-
cal components. Polarising beam splitting prisms are mainly 
used in technical laser interferometers that measure length. 
Contrary to neutral beam splitting prisms, the light is not 
split according to intensity, but is divided into orthogonal 
polarisation states. 
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Fig. 35: Polarising beam splitting prisms 

Vertically polarised light (S) is reflected on the inner layer 
of the prism, parallel light (P) is transmitted. If the polarisa-
tion direction of the light bends towards 45°, the beam split-
ting prism divides this light into its orthogonal components. 

1.10.2 Triple reflector 
If you cut a corner off a quadratic cube and put mirrors on 
the inner surfaces, you will get the important optical com-
ponents of a triple reflector. Every light beam, which is led 
into the corner of this cube under any given angle, goes 
through three different reflections (A,B,C) and is finally re-
flected back into the same direction. There is, however, an 
offset between the incoming and outgoing beam, which is 
dependent on the place in the triple reflector onto which it 
falls. 
 

A

B

C

 

Fig.36: Triple reflector 

A corner can also be cut out of a cube made totally of glass. 
The reflection is then total reflection. This type of triple re-
flector is used most frequently. The advantage is, that the 
reflection surfaces are protected from dust and dirt. 

1.10.3 Homodyne interferometer 
The term homodyne interferometer was conceived at a time 
when heterodyne interferometers were in predominant use. 
The first commercial laser interferometer was patented and 
brought into the market about 25 years ago by Hewlett 
Packard. Other manufacturers because of the patent situa-
tion produced Homodyne interferometers. Today both types 
of systems are in usage. The light beam in the reference arm 
has a very different frequency to the light beam in the index 
arm. In this way the possibility of an alternating current 
coupled with gating is possible. The fluctuations in contrast 
are then of no significance. A detailed discussion will fol-
low in the relevant chapter. The homodyne technique will 
be used for this experiment. This means that there is no fre-
quency difference between the light in the index and refer-
ence arms. The structure is identical to Fig.32. However, 
special measures must be taken in detection so that the 
changing contrast does not influence consistent counting of 

the interference fringes. The following signal sequences are 
produced and evaluated for this purpose. 
 

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
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λ/2

 
 

Fig.37: Signal sequences required for safe counting of 
interference fringes. 

The curves correspond to the equations 

A ( )2 2
01 02 01 02

1 1I E E E E cos k L
2 2

= + + ⋅∆  

B ( )2 2
01 02 01 02

1 1I E E E E cos k L
2 2

= + − ⋅∆  

D ( )2 2
01 02 01 02

1 1I E E E E sin k L
2 2

= + + ⋅∆  

E ( )2 2
01 02 01 02

1 1I E E E E sin k L
2 2

= + − ⋅∆  

 
Curve A is the reference curve. Curve B is formed out of A 
through a phase shift of 180° and curve D is formed when 
curve A undergoes a phase shift of 90°. Curve E is formed 
when curve D goes through a phase shift of 180°. If we sub-
tract curve B from curve A, the base is eliminated. The 
same is done with curves D and E. We can spare ourselves 
the subtraction work if we put the signals A and B, as well 
as E and D on a TTL-comparator. This type of comparator 
has the following output characteristic: 

High if A B
Output

Low  if A B
>

=  <
 

Signals C and F are produced in this way. Strictly speaking 
only counting the signal C is necessary, but we would then 
have no information on the direction in which the meas-
urement reflector moves. The signal whose phase has been 
shifted by 90° has been produced for this purpose alone. 
The recognition of the direction happens in such a way that 
a toggle is dependent on the entrance at which a decreasing 
side is first detected. The exit signal from the toggle con-
trols the following counter in the up or down mode. Let us 
make a timed observation of the signals C and F to under-
stand this better. If the measurement reflector moves out of 
a condition at z=0 (Fig.37) e.g. to the right, then the inten-
sity at detector A increases and decreases at B. A is larger 
than B; the exit of the comparator is high. After some time 
B>A and the corresponding comparator produces a decreas-
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ing side. The toggle sets the counter to up. If we were to go 
to the left from z=0 the first decreasing side would come 
from F and the toggle would be set back to enable the 
counter to switch to the Down mode. The necessary signals 
cannot be produced electronically. They therefore have to 
be provided by the interferometer. 

1.10.4 Detection optics 

Index Arm
Reference Arm

T1

T2
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B

C

D

P1

P2

P3
L4

 

Fig. 1: Detection optics 

By using a polarising beam splitter, the beams in the refer-
ence arm are polarised vertically to those in the index arm. 
It is well known that such polarising beams do not produce 
any interference pattern. They are sent through a small λ /4 
plate (L4) to “persuade” them to make an interference pat-
tern. This type of small plate consists of a birefringent crys-
tal, e.g. natural quartz. This kind of crystal is not isotropic 
optically. Due to the natural crystal growth it has two par-
ticular directions optically speaking that are caused by the 
asymmetry of the crystal cells. The inner structure of such a 
crystal can be compared to a forest of arranged antennae. 
An equal number of antennae receive both vertically and 
horizontally polarised radiation. These antennae are, in fact, 
dipoles that release the received radiation after a certain pe-
riod of time. These dipoles take up a light wave entering the 
crystal one after the other and release it again. The two 
types of dipole also cause two different speeds of light in 
the crystal.  

 

Fig.39: Birefringent crystal as a certain number of or-
thogonal dipoles 

If light with a polarisation of 45° is beamed into the “anten-
nae forest”, the light intensity will be equally spread on the 
dipoles since the light with a polarisation of 45° can be in-
terpreted as the superimposition of two orthogonal compo-
nents.  

Quarter Wave Plate

 

Fig. 40: Effect of a quarter-wave plate 

At the exit of the crystal there is a phase shift between the S 
and P components, which is composed by the different 
speeds of the components in the crystal. If we select the 
number of antennae or the thickness of the crystal in such a 
way that this phase delay is just 90°or λ /4, then we obtain 
two merging waves which are vertically polarised towards 
one another and also have a phase shift of 90°. If we add up 
these field strength components vectorally, the resulting 
field strength vector will rotate with the frequency of the 
light beam on the axis of the direction of expansion. The 
light is now circularly polarised. Depending on whether the 
quarter-wave plate is reached under a beaming in angle of 
45° or 135°, the polarised light will be right or left-handed 
circular. The quarter-wave plate sometimes has a mark on 
the edge that shows the direction “fast optical axis”. This 
axis is also described as the direction of the regular refrac-
tive index and the one at 90°, which is turned at a certain 
angle to it, is called the “slow axis, also known as irregular 
refractive index. 

Left circular

Right circular

 

Fig.41: Circular polarised light 
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Since we are sending two waves that are vertically polarised 
to each other from the interferometer into the crystal, we 
will obtain one left-handed and one right-handed circular 
wave behind the crystal. This can be shown more simply in 
the diagram of a circle. 
 

X

ωRef ωIndex

Y
ωRef ωIndex-

 

Fig.42: Orthogonal circularly polarised waves and their 
resultants. 

The above diagram shows a time exposure of the waves be-
hind the quarter-wave plate. An indicator rotates at the fre-
quency ωindex; another one rotates in the opposite direction 
at a frequency ωref. If both frequencies are the same, the re-
sulting indicator will be symmetrical to both the other ones 
and will only change its number. These changes happen so 
fast that a photodetector cannot follow them. If there is a 
difference in frequency between the beams coming from the 
index and reference arms, the resulting indicator starts to ro-
tate with the frequency of the difference. The direction of 
rotation depends on the signs indicating the difference. If 
we allow this light to pass through a polariser, a photodetec-
tor will detect a signal which has been temporally changed 
and which coincides exactly with the frequency difference. 
But what is the reason for this frequency difference between 
the reference and index beam? As long as the measurement 
reflector is not used, both frequencies are the same. If, how-
ever, the measurement reflector moves, the light frequency 
changes due to the Doppler effect. This happens according 
to: 

Meß 0
2 v1

c
⋅ ω = ω ⋅ ±  

 Ref 0ω = ω  

In this case ω0 is the frequency of the laser, v is the speed of 
the measurement reflector and c the speed of light. Factor 2 
of the speed moves, because the beam length is changed by 
4 cm, when, for example, 2cm is shifted due to the double 
passage of the light in the index arm. The difference in fre-
quency is therefore: 

Ref Meß 0
2 v

c
∓ ⋅∆ω = ω −ω = ω  

We will not use the sign + just now. The following are also 
used:  

0

c dz
2 dt

∆ω ⋅ =
⋅ω

. 

or 

0

cdz dt
2

= ⋅∆ω ⋅
ω

 

2 2 2

1 1 1

z t t
0

0z t t

cdz dt dt
2 2

λ
= ⋅ ∆ω ⋅ = ⋅ ∆ν⋅

ω∫ ∫ ∫  

If we therefore take into consideration that ∆v is the number 
∆N of the rotations of the resulting indicator per time unit 
counted by a counter, then  

N
dt
∆∆ν =  

2

1

t
0 0

2 1
t

Ns z z dt N
2 dt 2
λ λ∆= − = ⋅ ⋅ = ⋅∫  

The result is therefore the same as in the simple Michelson 
interferometer. The reason why this method is used is be-
cause it is now possible to split up the resulting beam and to 
send it through differently oriented polariser. Let us return 
to Fig.38 where we can see in the optical structure that both 
the orthogonal circularly polarised waves meet after the 
quarter-wave plate (L4) on the neutral beam splitter (P1) 
and are split into two channels at that point. One part of the 
radiation reaches the polarising beam splitting prism P2. 
This fulfils two tasks. On one hand it splits the radiation and 
on the other hand it is effective as a polarising analyser. The 
phases of the signals A and B are then shifted towards each 
other by 180°, as desired. The polarising beam splitter (P3) 
is arranged at a 45° angle in the second channel, so this 
channel has a phase shift of 90° compared to the other chan-
nel. The phases of the signals C and D are again shifted 
towards each other by 180°. In this way we obtain the nec-
essary phase shifts to compensate the varying contrast on 
one hand, and to obtain signals for the forward/reverse rec-
ognition on the other hand. The difference between the 
Michelson interferometer and this method is, that we do not 
obtain the path information from a contrasting picture de-
pendent on location, but from the fluctuation or mixture of 
two optical frequencies. Since we use only one basic fre-
quency for the mixing process, i.e. the frequency of light, 
this process is also called the homodyne process. 

1.10.5 Heterodyne interferometer 
An optical intermediate frequency is used in this process. It 
is obtained mainly from the frequency interval between the 
modes of a laser. 
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Fig.43: Heterodyne interferometer 

This frequency difference is approx. 2MHz in the case of 
older equipment. It is produced when a single mode HeNe 
laser tube is surrounded by a longitudinal magnetic field. 
The mode splits into two circularly polarised modes due to 
the Zeeman effect. The size of the slit and the frequency 
difference depends on the magnetic field strength. After 
both circular modes have crossed a quarter-wave plate, the 
modes that are now orthogonal are sent into the interfer-
ometer, which would otherwise have the same optical struc-
ture. 
A polarisation filter is placed in front of detector B, which 
detects the frequency 

ω1 - ω2 
 
Detector A sees the frequency 
 

ω1-ω2 + δω 
 
In this case δω is the change in frequency that is produced 
by the Doppler effect or by the movement of the measure-
ment reflector. Both signals are electronically mixed, sub-
tracted from each other and carried out using a phase dis-
criminator, which carries out forward-reverse recognition. 
Since both detector A and detector B only “see” alternating 

stress signals, fluctuations in the contrast are already elimi-
nated. Optical detection is obviously easier but the elec-
tronic preparation would be more expensive. Nowadays 
both interferometers have an equal place in the market and 
both perform with the high precision required. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 




